
s KATHOLIEKE UNIVERSITEIT LEUVEN

FACULTEIT INGENIEURSWETENSCHAPPEN

DEPARTEMENT COMPUTERWETENSCHAPPEN

AFDELING NUMERIEKE ANALYSE EN

TOEGEPASTE WISKUNDE

Celestijnenlaan 200A – B-3001 Heverlee

MULTIGRID METHODS FOR

TIME-DEPENDENT PARTIAL

DIFFERENTIAL EQUATIONS

Promotor:

Prof. Dr. ir. S. Vandewalle

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Jan VAN LENT

7 februari 2006





s KATHOLIEKE UNIVERSITEIT LEUVEN

FACULTEIT INGENIEURSWETENSCHAPPEN

DEPARTEMENT COMPUTERWETENSCHAPPEN

AFDELING NUMERIEKE ANALYSE EN

TOEGEPASTE WISKUNDE

Celestijnenlaan 200A – B-3001 Heverlee

MULTIGRID METHODS FOR

TIME-DEPENDENT PARTIAL

DIFFERENTIAL EQUATIONS

Jury:

Prof. Dr. ir. W. Sansen, voorzitter

Prof. Dr. ir. S. Vandewalle, promotor

Prof. Dr. ir. P. Dierckx

Prof. Dr. M. J. Gander

(Université de Genève)
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Multigrid Methods for Time-Dependent
Partial Differential Equations

Jan Van lent
Departement Computerwetenschappen, K.U.Leuven

Celestijnenlaan 200A, B-3001 Heverlee, België

Abstract

Time-dependent partial differential equations are solved numerically by dis-
cretizing both space and time. Since the resulting systems of equations can
be very large, it is often necessary to use iterative methods that exploit the
structure of these systems. For discretized parabolic problems multigrid
methods are a particularly good choice. A typical model problem is the
heat equation, discretized using finite differences or finite elements in space
and a linear multistep method in time. We investigate here how multigrid
techniques can be used for more general time-dependent problems. In par-
ticular we develop multigrid methods for anisotropic problems, high order
time discretizations and problems with delay. Furthermore, we propose a
new framework for the convergence analysis of multigrid methods for time-
dependent partial differences equations.

Anisotropic partial differential equations have coefficients with a strong
directional dependency. For such problems standard multigrid methods
break down. By extending the techniques for stationary anisotropic prob-
lems, we develop efficient multigrid methods for time-dependent anisotropic
problems. We consider methods based on line relaxation, semicoarsening
and multiple semicoarsening. The same methods are also applied with good
results to diffusion equations with coefficients that depend on position as
well as direction.

Implicit Runge-Kutta methods, boundary value methods and general lin-
ear methods are powerful time discretization schemes providing high order
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accuracy, good stability and many other desirable properties. For general
time-dependent problems, however, the resulting systems of equations are
harder to solve than the ones for linear multistep methods. We show that
for discretized parabolic problems, very efficient multigrid methods can be
developed. The stability of the time discretization schemes turns out to be
very important for the convergence of the iterative methods. The same tech-
niques are used to study iterative methods in combination with Chebyshev
spectral collocation in time.

For standard time-dependent partial differential equations, the change
of state at a certain time only depends on the current state of the system.
For delay partial differential equations, the change of state also depends on
the state of the system at times in the past. We study iterative methods
for diffusion equations with one extra term with a fixed delay.

In all these cases the performance of the methods is assessed with a the-
oretical convergence analysis and numerical experiments. The theoretical
analyses combine the theory of Volterra convolution operators and Laplace
transforms for time-dependent problems and Fourier mode techniques for
multigrid. We propose a new approach for the spectral analysis of itera-
tive methods based on functional calculus. This theory unifies the Laplace
analysis for time-dependent problems and the Fourier analysis of multigrid
methods.
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1 Inleiding

1.1 Ruimte en tijd

In deze thesis bestuderen we tijdsafhankelijke partiële differentiaalvergelij-
kingen. Het standaard modelprobleem is de warmtevergelijking

ut = uxx + uyy + f.

Dit soort problemen combineert karakteristieken van tijdsonafhankelijke el-
liptische problemen, enerzijds, en stijve gewone differentiaalvergelijkingen,
anderzijds. We bestuderen hoe multiroostertechnieken voor elliptische pro-
blemen en geavanceerde tijdsdiscretisatieschema’s voor stijve differentiaal-
vergelijkingen gecombineerd kunnen worden. We beschouwen zowel com-
plicaties met betrekking tot de ruimtelijk veranderlijken, zoals variërende
en richtingsafhankelijke coëfficiënten, als complicaties met betrekking tot de
tijd, zoals vertraging.
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1.2 Golfvormrelaxatie

We gebruiken golfvormrelaxatiemethodes als ruimer kader voor het bestu-
deren van de combinatie van gesofisticeerde technieken voor gewone dif-
ferentiaalvergelijkingen en partiële differentiaalvergelijkingen. Golfvormre-
laxatiemethodes kunnen beschouwd worden als de uitbreiding van iteratieve
methodes voor stelsels van algebräısche vergelijkingen naar stelsels van ge-
wone differentiaalvergelijkingen. De combinatie van multiroostertechnieken
en golfvormrelaxatie werd voor het eerst bestudeerd in [LO87] en [Van93].

1.3 Overzicht

Hoofdstuk 2 bevat een algemene beschrijving van de iteratieve methodes die
we hier beschouwen. Ook worden de belangrijkste stellingen voor de conver-
gentieanalyse van deze methodes gëıntroduceerd. We beschouwen eerst ite-
ratieve methodes voor stelsels van vergelijkingen, vervolgens methodes voor
stelsels van differentiaalvergelijkingen en tenslotte multiroostermethodes,
toepasbaar in beide gevallen. Dit hoofdstuk dient als samenvatting van de
bekende resultaten uit de literatuur over (multirooster-)golfvormrelaxatie.

In hoofdstuk 3 beschouwen we multiroostermethodes voor anisotrope
problemen. Gebaseerd op het elliptische geval ontwikkelen we methodes
voor het parabolische geval.

In hoofdstuk 4 bekijken we golfvormrelaxatie voor problemen waarbij
de tijd gediscretiseerd wordt met impliciete Runge-Kuttamethodes en rand-
waardemethodes.

Hoofdstuk 5 bouwt hierop verder en bestudeert Chebyshev spectrale
collocatie als tijdsdiscretisatie.

In hoofdstuk 6 worden de iteratieve methodes en hun analyse uitgebreid
naar partiële differentiaalvergelijkingen met vertraging.

Hoofdstuk 7 beschrijft een theorie voor de convergentieanalyse van ite-
ratieve methodes voor tijdsafhankelijke problemen gebaseerd op functionele
calculus. De theorie wordt ook toegepast op de tweeroosteranalyse van
multiroostermethodes.

In hoofdstuk 8 geven we een overzicht van enkele implementaties die
multiroostermethodes gebruiken voor tijdsafhankelijke problemen. We ein-
digen met enkele besluiten en ideeën voor verder onderzoek.

2 Iteratieve methodes voor tijdsafhankelijke
problemen

In dit hoofdstuk introduceren we de iteratieve methodes die de basis zullen
vormen voor de methodes in de rest van dit werk. We beschrijven eerst
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iteratieve methodes voor stelsels van vergelijkingen. Als modelprobleem ge-
bruiken we de Poissonvergelijking. Vervolgens bekijken we hoe gelijkaardige
principes gebruikt kunnen worden voor iteratieve methodes voor stelsels van
gewone differentiaalvergelijkingen. In dit geval nemen we de warmteverge-
lijking als modelprobleem. Voor beide gevallen geven we ook de basisprin-
cipes en stellingen die gebruikt worden voor de theoretische analyse van de
convergentie.

Voor de Poissonvergelijking en de warmtevergelijking zijn de klassieke
iteratieve methodes, zoals de methode van Jacobi of de methode van Gauss-
Seidel, erg traag. We beschrijven hoe multiroosterversnelling voor deze
gevallen leidt tot efficiënte methodes.

We sluiten dit hoofdstuk af met enkele numerieke resultaten.

2.1 Iteratieve methodes voor vergelijkingen

Als modelprobleem beschouwen we de Poissonvergelijking

uxx + uyy = f.

Discretisatie met eindige differenties leidt tot een stelsels van de vorm

Lu = f,

waarbij L een grote, ijle matrix is. Door deze matrix te splitsen als L =
L+ + L− bekomen we de iteratie

L+u(ν) + L−u(ν−1) = f.

Kiezen we voor L+ de diagonaal van L, dan bestaat elke iteratiestap uit het
oplossen van een reeks scalaire vergelijkingen, één voor elke onbekende. Dit
is de klassieke methode van Jacobi. Voor deze methode is de volgorde waar-
in de scalaire vergelijkingen beschouwd worden niet van belang. Kiezen we
voor L+ het onderdriehoeksdeel van L, dan moeten we in elke iteratiestap
nog steeds per onbekende een scalaire vergelijking oplossen. Dit is de klas-
sieke methode Gauss-Seidel. In dit geval is de volgorde van de vergelijkingen
echter wel van belang. Er zijn dus verschillende varianten mogelijk.

Als we de fout in iteratiestap ν schrijven als e(ν) = u(ν)−u, dan kunnen
we uit het oorspronkelijke stelsel van vergelijkingen voor u en de iteratie
voor u(ν) de volgende iteratie voor de fout afleiden

L+e(ν) = −L−e(ν−1).

We kunnen dit ook schrijven als

e(ν) = −(L+)−1L−e(ν−1) = Ke(ν−1).
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We noemen K = −(L+)−1L− de iteratiematrix. De iteratie zal convergeren
als ρ(K) < 1. De spectraalradius ρ(K) wordt in dit geval ook wel de con-
vergentiefactor genoemd. Hoe kleiner dit getal, hoe sneller de convergentie.
In de numerieke experimenten vergelijken we de theoretische convergentie-
factor met een schatting van de vorm

ρ(ν) =
‖e(ν)‖
‖e(ν−1)‖

.

Vaak zullen we de convergentiesnelheid

R = − log10(ρ)

gebruiken in plaats van de convergentiefactor ρ. De convergentiesnelheid
geeft aan hoeveel juiste cijfers er gemiddeld per iteratie bijkomen.

2.2 Iteratieve methodes voor differentiaalvergelijkin-
gen

Als modelprobleem beschouwen we de warmtevergelijking

ut = uxx + uyy + f.

Discretisatie van de ruimtelijke veranderlijken met eindige differenties leidt
tot een stelsel van gewone differentiaalvergelijkingen van de vorm

u̇ = Lu+ f.

De matrix L is dezelfde matrix als bij de gediscretiseerde Poissonvergelij-
king. Er zijn verschillende manieren om dit stelsel van vergelijkingen op te
lossen.

Passen we een schema zoals de impliciete Eulermethode toe, dan beko-
men we een sequentie van stelsels van de vorm.

ui = ui−1 + ∆tLui + ∆tfi.

Dit stelsel voor de onbekende ui kan nu op gelijkaardige manier opgelost
worden als de gediscretiseerde Poissonvergelijking. Met een splitsing L =
L+ + L− wordt de methode: voor elke i, voor elke ν, bereken u(ν)

i uit

u
(ν)
i = u

(ν)
i−1 + ∆tL+u

(ν)
i + ∆tL−u(ν−1)

i + ∆tfi.

We kunnen de splitsing L = L+ + L− ook rechtstreeks op het stelsel van
differentiaalvergelijkingen toepassen. Zo krijgen we een continuë golfvorm-
relaxatiemethode: voor elke ν, bereken u(ν) uit

u̇(ν) = L+u(ν) + L−u(ν−1) + f.
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Deze iteratie is interessant om theoretisch te bestuderen, maar voor prakti-
sche berekeningen moeten de differentiaalvergelijkingen gediscretiseerd wor-
den. Dit leidt dan tot discrete golfvormrelaxatiemethodes. Passen we de
impliciete Eulermethode toe, dan bekomen we de methode: voor elke ν,
voor elke i, bereken u(ν)

i uit

u
(ν)
i = u

(ν)
i−1 + ∆tL+u

(ν)
i + ∆tL−u(ν−1)

i + ∆tfi.

Merk op dat het enige verschil met de tijdstapmethode de volgorde van de
lussen is.

Het verband tussen de fout e(ν) = u(ν−1) − u voor opeenvolgende bena-
deringen kan geschreven worden als

e(ν) = Ke(ν−1). (1)

De convergentie kan opnieuw geanalyseerd worden aan de hand van de spec-
traalradius van de iteratieoperator K. Voor de iteratieve methodes voor
tijdsafhankelijke problemen die we hier beschouwen, geldt de formule

ρ(K) = max
z∈Σ

ρ(K(z)).

De matrix K(z) hangt af van de complexe parameter z en wordt gegeven
door

K(z) = (zI − L+)−1L−.

Dit is de iteratiematrix van de overeenkomstige iteratieve methode voor
stelsels toegepast op

zu = Lu+ f.

Afhankelijk van de manier waarop de tijdsdimensie behandeld wordt moet
een verschillende verzameling Σ ⊂ C gebruikt worden. De volgende tabel
vat enkele resultaten uit [MN87a, MN87b, LO87, Van93, JV96a, JV96b]
samen.

tijd domein Σ
continu

eindig {∞}
oneindig C̄+

periodiek 2πiZ
discreet

eindig {1/∆t}
oneindig {(1− w)/∆t : |w| ≤ 1}
periodiek {(1− w)/∆t : w = exp(2πij/n), 0 ≤ j < n}
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2.3 Multiroosterversnelling

Voor gediscretiseerde elliptische en parabolische vergelijkingen zijn de klas-
sieke methodes van Jacobi en Gauss-Seidel erg traag. Deze methodes kun-
nen echter als basis dienen voor multiroostermethodes. Bij een multirooster-
methode worden berekeningen op grovere roosters gebruikt om de iteraties
op fijne roosters te versnellen. Stel dat we een benadering x(1) hebben voor
de oplossing x van het stelsel Ax = b. We kunnen de correctie e = x−x(1)

bepalen door het stelsel Ae = b − Ax(1) op te lossen. Als x(1) bekomen
werd door een relaxatie (zoals de methode van Jacobi of Gauss-Seidel), dan
kan de oplossing van dit stelsel goed benaderd worden op een grover rooster.

Algoritme 2.6.1 geeft schematisch weer hoe een tweeroostermethode voor
een stelsel van de vorm Ax = b eruitziet. Bij een tweeroostermethode wordt
de vergelijking Āx̄ = b̄ op het grove rooster exact opgelost. We bekomen
een multiroostermethode door ook deze vergelijking benaderend op te lossen
door gebruik te maken van een nog grover rooster en zo verder tot we op
een rooster komen met een stelsel dat klein genoeg is om eenvoudig exact
opgelost te worden.

Voor de convergentieanalyse van multiroostermethodes wordt meestal
enkel een tweeroosteriteratie beschouwd. De analyse verloopt op dezelfde
manier als voor de iteraties op een enkel rooster. In de formule voor de
convergentiefactor moet de matrix K(z) vervangen worden door de matrix

M(z) = S(z)ν1C(z)S(z)ν2 .

De matrices voor de relaxatie S en de grofroostercorrectie C zijn

S(z) = (zI − L+)−1L−,

C(z) = I − P (zI − L̄)−1R(zI − L).

2.4 Numerieke experimenten

Tabel 2.1 geeft convergentiesnelheden voor een Gauss-Seidelmethode en
een multiroostermethodes toegepast op de Poissonvergelijking gediscreti-
seerd op roosters van verschillende fijnheid. Het is duidelijk dat de Gauss-
Seidelmethode enkel voor erg grove roosters werkt. De multiroostermethode
daarentegen produceert bijna 1 juist cijfer per iteratie, onafhankelijk van de
roosterfijnheid.

Tabel 2.2 toont aan dat dezelfde besluiten ook gelden voor de overeen-
komstige methodes toegepast op de warmtevergelijking.
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3 Anisotrope problemen

We bestuderen multiroostermethodes voor anisotrope tijdsafhankelijke par-
tiële differentiaalvergelijkingen aan de hand van drie modelproblemen. De
isotrope diffusievergelijking

ut = uxx + uyy + f,

is de warmtevergelijking uit de vorige hoofdstukken. De anisotrope diffu-
sievergelijking

ut = εuxx + uyy + f,

heeft een parameter ε die de mate van anisotropie aangeeft. De geroteerde
anisotrope diffusievergelijking

ut = (εc2 + s2)uxx + (c2 + εs2)uyy + 2(ε− 1)csuxy + f,

met c = cosβ en s = sinβ, heeft nog een extra parameter β die de richting
van de anisotropie aangeeft. De geroteerde vergelijking kan afgeleid worden
van de anisotrope diffusievergelijking door een rotatie van de coördinaatas-
sen over een hoek β.

3.1 Multiroostermethodes

Een multiroostermethode met puntrelaxatie en standaardvergroving werkt
goed voor de isotrope diffusievergelijking. Voor de anisotrope vergelijkingen
met ε 6= 1 gaat de efficiëntie echter snel verloren.

Bij puntrelaxatie worden de onbekenden roosterpunt per roosterpunt
gewijzigd. Om de nieuwe waarde in een roosterpunt te vinden moet slechts
een scalaire vergelijking opgelost worden. Voorbeelden zijn Jacobirelaxatie
en rood-zwart of vier-kleuren Gauss-Seidelrelaxatie (zie figuren 3.2).

Bij lijnrelaxatie worden de onbekenden geassocieerd met een hele lijn
van roosterpunten tegelijkertijd gewijzigd. Voor elke lijn moet een stelsel
van vergelijkingen opgelost worden. Deze stelsels zijn echter kleiner en een-
voudiger dan het oorspronkelijke stelsel. Voorbeelden zijn horizontale en
verticale lijn Gauss-Seidelrelaxatie en horizontale en verticale zebra Gauss-
Seidelrelaxatie (zie figuren 3.3). Een horizontale gevolgd door een verticale
lijnrelaxatie noemen we alternerende lijnrelaxatie.

Bij standaard vergroving wordt de roosterafstand in beide richtingen
verdubbeld om een grover rooster te bekomen. Figuur 3.4 toont een typische
hiërarchie van roosters.

Bij semivergroving wordt de roosterafstand slechts voor een van de co-
ordinaatrichtingen verdubbeld. De roosters op de eerste rij van figuur 3.6
komen overeen met semivergroving in de x-richting. De eerste kolom komt
overeen met semivergroving in de y-richting.
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Bij meervoudige semivergroving worden alle roosters uit figuur 3.6 ge-
bruikt. We gebruiken hier de “multirooster als relaxatie” methode [Oos95,
WO98]. Deze methode is gebaseerd op een multiroostercyclus met stan-
daardvergroving (de diagonaal van figuur 3.6) waarbij de relaxatie voor elk
van deze roosters bestaat uit een multiroostercyclus met semivergroving in
de x-richting gevolgd door een multiroostercyclus met semivergroving in de
y-richting.

3.2 Convergentieanalyse

Voor de convergentieanalyse beschouwen we een tweeroosteriteratie. Om de
analyse nog verder te vereenvoudigen werken we met periodieke roosters.
Dit laat een analyse toe op basis van Fouriermodes. De formule voor de
spectraalradius wordt dan

ρ(M) = max
z∈Σ

max
θ∈Θ′

ρ(M(z, θ)).

De verzameling Σ ⊂ C is dezelfde als in het voorgaande hoofdstuk en hangt
af van de manier waarop de tijdsdimensie behandeld wordt. De verzame-
ling Θ′ ⊂ [−π

2 ,
π
2 ]2 bevat de golfgetallen van de Fouriermodes. De matrix

M(z, θ) is een 4 × 4 matrix. De opbouw van deze matrix voor standaard
vergroving en semivergroving wordt weergegeven in figuur 3.9.

3.3 Numerieke experimenten

Tabel 3.7 vat de resultaten voor de anisotrope diffusievergelijking samen (zie
ook tabel 3.2). Puntrelaxatie met standaard vergroving werkt enkel voor
ε = 1. Horizontale lijnrelaxatie met standaard vergroving werkt voor ε > 1
en verticale lijnrelaxatie werkt voor ε < 1. Puntrelaxatie met semivergro-
ving werkt enkel voor beperkte bereiken van ε. Puntrelaxatie met meervou-
dige semivergroving werkt voor alle ε, net als alternerende lijnrelaxatie met
standaard vergroving en horizontale lijnrelaxatie met semivergroving in de
y-richting (en vice versa).

Analoge conclusies gelden voor de geroteerde anisotrope diffusieverge-
lijking als de anisotropie in de richting van de coördinaatassen ligt (β een
meervoud van 90◦). Voor andere waarden van β kunnen alternerende lijn-
relaxatie met standaard vergroving, puntrelaxatie met meervoudige semi-
vergroving en lijnrelaxatie met semivergroving nog steeds gebruikt worden.
De efficiëntie neemt echter af. De methode gebaseerd op meervoudige semi-
vergroving lijkt de meest robuuste.

Numerieke experimenten tonen aan dat de voorgaande methodes ook
bruikbaar zijn voor meer algemene diffusievergelijkingen van de vorm

ut = (aux)x + (buy)y + f,
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waarbij de coëfficiënten a(x, y) en b(x, y) kunnen afhangen van x en y en
erg verschillend kunnen zijn (zie tabel 3.11).

4 Hoge-orde tijdsdiscretisatieschema’s

In de vorige hoofdstukken beschouwden we enkel eenvoudige tijdsdiscretisa-
tieschema’s zoals de impliciet Eulermethode. Meer gesofistikeerde schema’s
zoals impliciete Runge-Kuttamethodes en randwaardemethodes bieden veel
voordelen, maar resulteren in grotere stelsels die in het algemeen moeilijker
op te lossen zijn. Voor parabolische problemen kunnen we echter efficiënte
multiroostermethodes ontwikkelen.

4.1 Tijdsdiscretisatieschema’s

We beschrijven de beschouwde tijdsdiscretisatieschema’s aan de hand van
de scalaire gewone differentiaalvergelijking

ẏ(t) = f(t, y(t))

We geven voor elke methode de uitdrukking voor de benadering yi = y(ti)
op het tijdstip ti = i∆t, met ∆t de tijdstap.

Een k-staps lineaire multistapmethode (LMM) gebruikt benaderingen
uit de vorige stappen in een formule van de vorm

0∑
j=−k

αk+jyi+j = ∆t
0∑

j=−k

βk+jf(ti+j , yi+j),

waarbij αk en βj de coëfficiënten van de methode zijn.
Een impliciete Runge-Kuttamethode (IRK) gebruikt een aantal tussen-

liggende waarden ỹi om een nieuwe benadering yi te berekenen uit de voor-
gaande benadering yi−1. De berekening van ỹi en yi verloopt volgens de
formules

ỹi = 1syi−1 + ∆tAf(t̃i, ỹi),

yi = yi−1 + ∆tbT f(t̃i, ỹi),

waarbij de matrix A en de vector b de coëfficiënten van de methode bevatten.
Algemene lineaire methode (GLM) kunnen beschouwd worden als een

veralgemening van impliciete Runge-Kuttamethodes waarbij niet alleen ỹi,
maar ook yi een vector met meerdere waarden is. Deze vectoren worden
berekend uit

ỹi = Cyi−1 + ∆tAf(t̃i, ỹi),

yi = Dyi−1 + ∆tBf(t̃i, ỹi),
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waarbij de matrices A, B, C en D de coëficiënten van de methode bevat-
ten. Zowel lineaire multistapmethodes als impliciete Runge-Kuttamethodes
kunnen als algemene lineaire methodes geformuleerd worden.

Bij een k-staps randwaardemethodes (BVM) wordt voor elke tijdstip ti
een formule van de vorm

k2∑
j=−k1

αk1+jyi+j = ∆t
k2∑

j=−k1

βk1+jf(ti+j , yi+j).

Dit kan beschouwd worden als een veralgemening van de lineaire multi-
stapmethodes. De waarden yi worden bekomen door het oplossen van een
stelsel met bandbreedte k dat niet noodzakkelijk onderdriehoeks is, zoals
bij lineaire multistapmethodes wel het geval.

Blok-randwaardemethodes (BBVM) splitsen het tijdsinterval op in sub-
intervallen en passen op elk subinterval een randwaardemethode toe. De
vergelijkingen voor een subinterval kunnen geschreven worden als

Ayi +A0yi−1 = ∆tBf(ti, yi) + ∆tB0f(ti−1, yi−1).

Elke blok-randwaardemethode kan geformuleerd worden als een algemene
lineaire methode en vice versa.

4.2 Tijdsintegratie

Zoals in de voorgaande hoofdstukken beschouwen we een lineair stelsel van
differentiaalvergelijkingen

u̇ = Lu+ f.

dat mogelijk afkomstig is van een ruimtelijke discretisatie van een tijdsaf-
hankelijke partiële differentiaalvergelijking. Tijdsdiscretisatie leidt tot een
groot stelsel van vergelijkingen dat we via een splitsing L = L+ + L− itera-
tief kunnen oplossen. Als we voor de tijdsdiscretisatie een algemene linaire
methode gebruiken dan bekomen we de iteratie

ũ
(ν)
i = (C ⊗ Im)u(ν)

i−1+∆t(A⊗ L+)ũ(ν)
i

+∆t(A⊗ L−)ũ(ν−1)
i + ∆t(A⊗ Im)f̃i,

u
(ν)
i = (D ⊗ Im)u(ν)

i−1+∆t(B ⊗ L+)ũ(ν)
i

+∆t(B ⊗ L−)ũ(ν−1)
i + ∆t(B ⊗ Im)f̃i.

Als we een blok-randwaardemethode gebruiken dan bekomen we

(A⊗Im)u(ν)
i + (A0 ⊗ Im)u(ν)

i−1 =

∆t(B ⊗ L+)u(ν)
i + ∆t(B ⊗ L−)u(ν−1)

i + ∆t(B ⊗ Im)fi+

∆t(B0 ⊗ L+)u(ν)
i−1 + ∆t(B0 ⊗ L−)u(ν−1)

i−1 + ∆t(B0 ⊗ Im)fi−1.
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Merk op dat wanneer L+ diagonaal of onderdriehoeks is, in elk roosterpunt
een stelsel met een matrix van de vorm I − lA of A − lB) moet opgelost
worden. Dit kan efficiënt gebeuren vermits het om volle matrices of band-
matrices gaat. Voor gediscretiseerde parabolische vergelijkingen kunnen de
bovenstaande iteratieve methodes als relaxatie in een multiroostermethode
gebruikt worden.

4.3 Convergentieanalyse en stabiliteit

De convergentiefactor van multiroostermethodes voor tijdsafhankelijke pro-
blemen wordt gegeven door de formule

ρ = sup
z∈ 1

∆t ∂Σ

ρ(M(z)).

De functie ρ(M(z)) kan geschat worden met een Fourieranalyse van de twee-
roosteriteratie voor de vergelijking

zu = Lu+ f.

De onderstaande tabel beschrijft de verzamelingen Σ voor verschillende
tijdsdiscretisatieschema’s. De eerste rij verwijst naar tijdstapmethodes en
discrete golfvormrelaxatie op eindige intervallen. De tweede rij verwijst naar
discrete golfvormrelaxatie op oneindige intervallen (|w| ≥ 1). Merk op dat
de eerste rij overeenkomt met |w| → ∞.

GLM BBVM
[0, tF ] σ(A−1) σ(B−1A)
[0,∞] σ

(
(A+ C(wIr −D)−1B)−1

)
σ
(
(B0 + wB)−1(A0 + wA)

)
Vermits Σeindig ⊂ Σoneindig hebben we steeds ρeindig ≤ ρoneindig. We tonen
aan dat voor alle tijdsdiscretisatieschema’s geldt

Σoneindig = C \ S,

met S het open stabiliteitsgebied van het tijdsdiscretisatieschema. Er is dus
een nauw verband tussen de convergentie van de iteratieve methodes en de
stabiliteit van het tijdsdiscretisatieschema. Een tijdsdiscretisatieschema is
A-stabiel als S ⊂ C̄−. Dit is equivalent met Σ ⊂ C̄+. De convergentiefactor
voor continuë golfvormrelaxatie wordt gevonden met Σ = C̄+. Deze con-
vergentiefactor vormt dus steeds een bovengrens voor de convergentiefactor
van de overeenkomstige discrete methodes als een tijdsdiscretisatieschema
gebruikt wordt dat A-stabiel is.
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4.4 Numerieke experimenten

Uit de theoretische analyse en numerieke experimenten blijkt dat multi-
roostermethodes uitstekend werken in combinatie met stabiele tijdsdiscre-
tisaties. De convergentiesnelheid van de MGS methode toegepast op de
vergelijking

ut = (aux)x + (buy)y + f,

a(x, y, t) = exp(10(x− y)),
b(x, y, t) = exp(−10(x− y)),

gediscretiseerd met verschillend tijdsdiscretisatieschema’s, wordt gegeven
in de tabel 4.5. Per iteratie neemt de nauwkeurigheid van de oplossing
gemiddeld met meer dan een juist cijfer toe.

5 Spectrale tijdsdiscretisatieschema’s

Uit het voorgaande hoofdstuk is gebleken dat multiroostermethodes erg
efficiënt zijn voor diffusieproblemen, zelfs als geavanceerde tijdsdiscretisa-
tieschema’s gebruikt worden. Het is wel van groot belang dat het gebruik-
te schema goede stabiliteitseigenschappen heeft. De blok-randwaardeme-
thodes uit het vorige hoofdstuk zijn enkel A-stabiel voor lage ordes van
nauwkeurigheid. Stabiele methodes met een hoge orde van nauwkeurigheid
kunnen bekomen worden door discretisaties op niet equidistante punten te
beschouwen. We bestuderen een klasse van schema’s gebaseerd op de Che-
byshevpunten.

5.1 Chebyshev spectrale collocatie

Een interpolerende spectrale methode benadert de afgeleide van een functie
v in een interval als volgt: Kies punten xj in het beschouwde interval.
Construeer de interpolerende veelterm p zodat p(xj) = v(xj). Benader
v′(xj), de afgeleide van de functie v in xj met wj = p′(xj), de afgeleide van
de veelterm in xj .

Het is duidelijk dat spectrale differentiatie een lineaire operatie is. We
kunnen het verband tussen w en v dus schrijven als

w = Dv.

Voor de Chebyshevpunten

xj = cos
jπ

n
, j = 0, . . . , n.
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is de differentiatiematrix D eenvoudig te construeren.
We kunnen nu deze spectrale differentiatie gebruiken om de differenti-

aalvergelijking
v̇(t) = f(v(t))

te discretiseren. Nemen we als benadering voor de onbekende functie v de
interpolerende veelterm door de onbekende waarden vj in de punten xj , dan
bekomen we het stelsel

Dv = f(v).

Dit proces noemen we Chebyshev spectrale collocatie. We kunnen aantonen
dat deze methode kan gëınterpreteerd worden als een impliciete Runge-
Kuttamethode en als een blok-randwaardemethode.

5.2 Stabiliteit

Uit het vorige hoofdstuk weten we dat de convergentie van iteratieve me-
thodes voor tijdsafhankelijke problemen nauw samenhangt met de stabiliteit
van het gebruikte tijdsdiscretisatieschema. We onderzoeken daarom de sta-
biliteit van Chebyshev spectrale collocatie. Het blijkt dat enkel de methodes
van orde 1 en 2 A-stabiel zijn. Alle methodes van hogere orde zijn echter
A(α)-stabiel met α dicht bij 90◦.

5.3 Numerieke experimenten

We kunnen de methode die afgeleid werd voor scalaire differentiaalvergelij-
kingen ook toepassen voor de tijdsdiscretisatie van stelsels van differentiaal-
vergelijkingen. Voor de vergelijking

u̇ = Lu+ f

bekomen we
(D ⊗ Im) = (In+1 ⊗ L)u+ f.

Voor een algemene matrix L is het niet eenvoudig dit stelsel van dimensie
(n + 1)m op te lossen. Als de differentiaalvergelijking een gediscretiseerde
diffusievergelijking is, kunnen we echter een multiroostermethode gebruiken.
Typisch moet dan in elk roosterpunt een stelsel met een dichte matrix van
dimensie n+1 opgelost worden. De afzonderlijke iteraties kunnen dus effici-
ent gëımplementeerd worden. Vermits Chebyshev spectrale collocatie goede
stabiliteit vertoont, kunnen we bovendien verwachten dat het totale aantal
iteraties klein zal zijn.

Figuur 5.7 toont de convergentie van de norm van het verschil tussen
de exacte continuë oplossing en de discrete benadering voor een standaard
multiroostermethode toegepast op de warmtevergelijking

ut = uxx + uyy + f.
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Het aantal onbekenden is steeds hetzelfde. Het is duidelijk dat de methodes
met een hoge orde van nauwkeurigheid met hetzelfde aantal onbekenden
een veel kleinere fout bekomen. Bovendien presteert Chebyshev spectrale
collocatie (CSC) voor orde 20 merkelijk beter dan de methodes gebaseerd
op equidistante punten (GBDF, BGBDF).

De convergentiesnelheden in tabel 5.3 tonen aan dat de multiroosterme-
thodes erg efficiënt zijn voor de methodes van lage orde. Voor orde 20 is de
convergentie van de methodes gebaseerd op equidistante punten erg traag.
De prestaties van de bijna A-stabiele Chebyshev spectrale collocatie blijven
echter goed.

We besluiten dat tijdsdiscretisatieschema’s gebaseerd op Chebyshev spec-
trale collocatie nauwkeurigheid van hoge orde en goede stabiliteit toelaten.
Deze laatste eigenschap zorgt voor goede convergentie bij multiroosterme-
thodes toegepast op gediscretiseerde diffusievergelijkingen.

6 Problemen met vertraging

We onderzoeken iteratieve methodes voor tijdsafhankelijke partiële differen-
tiaalvergelijking met vertraging aan de hand van het modelprobleem

ut(t, x, y) = uxx(t, x, y) + uyy(t, x, y)− u(t− τ, x, y).

Discretisatie leidt tot een stelsel van differentiaalvergelijkingen met vertra-
ging

u̇(t) = Lu(t) + bu(t− τ).

6.1 Golfvormrelaxatiemethodes

Gebaseerd op een splitsing L = L+ + L− zijn twee iteraties mogelijk. Bij
de Picarditeratie wordt voor de term met vertraging de oude benadering
gebruikt. Het stelsel van differentiaalvergelijkingen met vertraging wordt
omgezet naar een stelsel van gewone differentiaalvergelijkingen

u̇(ν)(t)− L+u(ν)(t) = L−u(ν−1)(t)− u(ν−1)(t− τ).

Bij de niet-Picarditeratie blijft de term met vertraging behouden. Het stel-
sel van differentiaalvergelijkingen met vertraging wordt omgezet naar een
eenvoudiger stelsel van differentiaalvergelijkingen nog steeds met vertraging

u̇(ν)(t)− L+u(ν)(t) + u(ν)(t− τ) = L−u(ν−1)(t).
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6.2 Convergentieanalyse

De convergentiefactor van de iteraties kan geschreven worden als

ρ(K) = sup
z∈C̄+

ρ(K(z)) = sup
ξ∈R

ρ(K(iξ)),

met voor het Picard geval

K(z) = (zI − L+)−1(−e−τzI + L−)

en voor het niet-Picard geval

K(z) = ((z + e−τz)I − L+)−1L−.

De iteraties kunnen als relaxatie gebruikt worden in een multiroosterme-
thode. De convergentieanalyse verloopt analoog aan het geval zonder ver-
traging.

6.3 Numerieke experimenten

Tabel 6.2 geeft convergentiefactoren voor een multiroostermethode toege-
past op het modelprobleem met verschillende waarden voor de vertraging τ
en de grootte van het ruimtelijke domein d. Als relaxatie gebruikt de mul-
tiroostermethode een Picard- of een niet-Picarditeratie. In beide gevallen is
de multiroostermethode efficiënt.

Ook voor een vergelijking met variabele coëficiënten blijken de multi-
roostermethodes erg efficiënt.

7 Convergentieanalyse met functionele calcu-
lus

Om de convergentie van een iteratieve methode theoretisch te analyseren
gaan we op zoek naar de spectraalradius van de bijhorende iteratieoperator.
Voor een stelsel van vergelijkingen van de vorm

u̇ = Lu+ f,

bekomen we met een splitsing L = L+ + L− de iteratie

u̇(ν) = L+u(ν) + L−u(ν−1) + f.

Afhankelijk van de manier waarop de tijdsdimensie behandeld wordt (tijd-
stap/golfvormrelaxatie, continu/discreet, eindig/oneindig/periodiek, verschil-
lende tijdsdiscretisaties) krijgen we verschillende iteratieve methodes. De
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formule voor de spectraalradius van de overeenkomstige iteratieoperatoren
is steeds van de vorm

ρ(K) = sup
z∈Σ

ρ((zIm − L+)−1L−).

De afleiding van deze formule is echter bij elk van de varianten op verschil-
lende theorieën gebaseerd. We introduceren hier een aanpak gebaseerd op
functionele calculus die de verschillende analyses verenigt.

7.1 Functionele calculus

Voor een gegeven operator T wijst een functionele calculus aan een functie
f van een complexe parameter een operator f(T ) toe. De toewijzing is
zodanig dat de rekenregels die gelden voor functies, ook gebruikt kunnen
worden voor de overeenkomstige operatoren. De functionele calculus voor
scalaire functies f is welbekend. We gebruiken hier een veralgemening voor
matrixwaardige functies.

Voor een operator T en een matrixwaardige functie F : C→ Cm×m die
analytisch is in een omgeving van σ(T ) definiëren we

F (T ) =
1

2πi

∮
F (z)⊗ (zIX − T )−1dz.

De rekenregels die gelden voor aldus gedefinieerde operatoren zijn

αF (T ) + βG(T ) = (αF + βG)(T ) (lineaire combinatie),
F (T ) ·G(T ) = (F ·G)(T ) (vermenigvuldiging),

G(F (T )) = (G ◦ F )(T ) (samenstelling van functies).

Op basis van deze regels kunnen we bewijzen dat het spectrum van de
operator F (T ) wordt gegeven door de formule

σ(F (T )) =
⋃

z∈σ(T )

σ(F (z)) =: σ(F (σ(T ))).

Hieruit volgt dat de spectraalradius van F (T ) gegeven wordt door

ρ(F (T )) = max
z∈σ(T )

ρ(F (z)).

Deze formules zijn geldig wanneer T een matrix of een begrensde operator
is. Als we σ(T ) vervangen door σ∞(T ) = σ(T )∪ {∞}, dan zijn de formules
ook geldig voor gesloten operatoren.
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7.2 Analyse van golfvormrelaxatiemethodes

De voorgaande theorie laat ons toe om de iteratieoperatoren van een heel
gamma aan methodes op te bouwen, uitgaande van eenvoudige operatoren.
Als we het spectrum van deze eenvoudige operatoren kennen, dan volgt
onmiddellijk het spectrum van de iteratieoperator.

We beschouwen een algemeen stelsel

(Im ⊗ T )u = (L⊗ IX)u+ f

met de bijhorende iteratie

(Im ⊗ T )u(ν) = (L+ ⊗ IX)u(ν) + (L− ⊗ IX)u(ν−1) + f.

De iteratieoperator kan geschreven worden als

F (T ) = (Im ⊗ T − L+ ⊗ IX)−1(L− ⊗ IX),

waarbij de matrixwaardige functie F gegeven wordt door

F (z) = (zI − L+)−1L−.

Deze functie is analytisch in C \ σ(L+). Als we veronderstellen dat

σ(L+) ∩ σ(T ) = φ,

dan worden het spectrum en de spectraalradius van F (T ) beschreven door
de formules uit de vorige paragraaf. De verschillende iteratieve methodes
worden nu bekomen door een gepaste keuze van de operator T en de analyse
is gereduceerd tot het bepalen van het spectrum van deze eenvoudigere
operator.

Voor continuë golfvormrelaxatie kiezen we T = d
dt . Het spectrum van

deze operator hangt af van het type van problemen. We vinden voor begin-
waardeproblemen op eindige tijdsintervallen

σ∞(T ) = {∞}.

Op oneindige tijdsintervallen wordt dat

σ∞(T ) = C̄−.

Voor periodieke problemen bekomen we

σ∞(T ) = 2πiZ.

Bij discrete golfvormrelaxatie is T een discrete benadering van d
dt . Voor

de impliciete Eulermethode hebben we bijvoorbeeld

(Tx)i =
xi − xi−1

∆t
.



xxxv

In het algemene geval kan T zelf geschreven worden als een functie van
een eenvoudigere operator. Voor een algemene lineaire methode met als
coëficiëntenmatrices A, B, C en D vinden we

T = G(S),

met S een verschuivingsoperator en

G(z) =
1

∆t
(A+ zC(Ir − zD)−1B)−1.

In het geval van de impliciete Eulermethode wordt deze functie

G(w) = g(w) =
1− w
∆t

.

Voor beginwaardeproblemen op eindige tijdsintervallen vinden we

σ(S) = {0}.

Voor beginwaardeproblemen op oneindige tijdsintervallen wordt dat

σ(S) = {w ∈ C : |w| ≤ 1}.

Voor periodieke problemen bekomen we

σ(S) = {w = exp
(

2πij
n

)
, j = 0, . . . , n− 1}.

7.3 Analyse van multiroostermethodes

Niet alleen de Laplaceanalyse van iteratieve methodes voor tijdsafhankelijke
problemen, maar ook de Fourieranalyse van multiroostermethodes kan inge-
past worden in deze theorie. We beschouwen hiertoe de tweeroosteriteratie
voor een probleem op periodieke of oneindige roosters. De iteratieoperator
voor een tweedimensionale vergelijking kan geschreven worden als

M = M(Px, Py),

met Px en Py periodieke (of oneindige) verschuivingsoperatoren en

M : C2 → C4×4 : (wx, wy)→M(wx, wy)

een matrixwaardige functie met twee complexe parameters wx en wy. In
combinatie met de analyse voor tijdsafhankelijke problemen leidt dit uitein-
delijk tot een formule van de vorm

ρ(M) = max
|wt|=|wx|=|wy|=1

ρ(M(wt, wx, wy)),

waarbij M(wt, wx, wy) een kleine matrix is met 3 complexe parameters.
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8 Slotbemerkingen

8.1 Implementatieaspecten

Voor de numerieke experimenten in hoofdstuk 3 gebruikte ik een code ge-
schreven in de programmeertaal C++. Het merendeel van de methodes heb
ik later opnieuw gëımplementeerd in Python. Het resulterende programma
is beter leesbaar en makkelijker aan te passen. Meestal zijn programma’s
geschreven in Python minder effciënt dan C++ programma’s, maar door
het gebruik van gepaste bibliotheken was dit voor onze toepassing niet dra-
matisch.

De convergentieanalyse had ik oorspronkelijk gëımplementeerd in Mat-
lab. De code was niet erg efficiënt en om ze efficiënt te maken zou een
grondige herstructurering nodig geweest zijn. Ik koos daarom voor een
nieuwe implementatie die de programmeertaal ZPL voor de rekenintensieve
componenten combineert met Python.

Tijdens een bezoek aan de universiteit van Bari integreerde ik in sa-
menwerking met Francesca Mazzia een multiroostermethode in GAMD, een
pakket voor het oplossen van beginwaardeproblemen.

Multiroostermethodes kunnen ook gebruikt worden voor tijdsafhanke-
lijke problemen gediscretiseerd met eindige elementen in plaats van eindige
differenties. Er werden enkele experimenten gedaan voor problemen ge-
discretiseerd met eindige elementen in de ruimte en een impliciete Runge-
Kuttamethode in de tijd. We gebruikten onder andere Femlab, een pak-
ket voor het oplossen van partiële differentiaalvergelijkingen met de eindige
elementenmethode en SAMG, een algebräısche multiroostermethode voor
stelsels van partiële differentiaalvergelijkingen.

8.2 Samenvatting en besluiten

Hoofdstuk 2 toonde aan de hand van twee modelproblemen hoe multiroos-
termethodes zowel voor tijdsonafhankelijke als voor tijdsafhankelijke pro-
blemen gebruikt kunnen worden. In de volgende hoofdstukken werd gëıllu-
streerd dat zowel de methodes als hun analyse uitgebreid kunnen worden
naar ruimere klasses van problemen.

In hoofdstuk 3 beschouwden we methodes voor anisotrope problemen.
De hoofdstukken 4 en 7 toonden aan dat er een nauw verband is tussen

de convergentie van iteratieve methodes voor tijdsafhankelijke problemen
en de stabiliteit van het gebruikte tijdsdiscretisatieschema.

We konden besluiten dat de combinatie van een gepaste multirooster-
methode met een gepast tijdsdiscretisatieschema leidt tot een iteratieve me-
thode die ongeveer even snel convergeert als de multiroostermethode voor
het overeenkomstige tijdsonafhankelijke probleem. Het werk per iteratie
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komt ongeveer overeen met het werk per iteratie voor het tijdsonafhanke-
lijke geval vermenigvuldigd met de kost voor het oplossen van een scalaire
differentiaalvergelijking.

De hoofdstukken 4 en 5 toonden aan dat wanneer multiroostermetho-
des gebruikt kunnen worden, het de moeite waard is om het gebruik van
geavanceerde tijdsdiscretisatieschema’s te overwegen.

In hoofdstuk 6 werd aangetoond dat golfvormrelaxatie ook gebruikt kan
worden voor partiële differentiaalvergelijkingen met vertraging.

Hoofdstuk 7 introduceerde een elegante manier om de spectra van een
groot aantal iteratieoperatoren te bepalen.

8.3 Suggesties voor verder onderzoek

Een huidige onderzoekspiste is het gebruik van algebräısche multirooster-
methodes voor het oplossen van grote eindige elementendiscretisaties van
tijdsafhankelijke partiële differentiaalvergelijkingen. Dit soort methodes zijn
interessant wanneer onregelmatige en adaptieve roosters nuttig zijn.

Bij sommige van de besproken methodes moet voor elk ruimtelijk roos-
terpunt een groot stelsel opgelost worden. We gebruikten hiervoor directe
methodes voor volle of ijle matrices. Voor randwaardemethodes van hoge
orde met veel tijdstappen zouden gepreconditioneerde iteratieve methodes
gebruikt kunnen worden. Voor spectrale tijdsdiscretisaties zouden metho-
des gebaseerd op snelle Fourier- of consinustransformaties gebruikt kunnen
worden.

Het zou interessant kunnen zijn om bestaande pakketten voor de tijds-
integratie van differentiaalvergelijkingen en differentiaalvergelijkingen met
vertraging te gebruiken als componenten van een multirooster-golfvormre-
laxatiemethode.

De theorie van hoofdstuk 7 kan uitgebreid worden naar differentiaal-
vergelijkingen met vertraging. Niet alleen spectra maar ook pseudospectra
kunnen met functionele calculus bestudeerd worden. Vele formules kunnen
eenvoudiger voorgesteld worden met veralgemeende eigenwaarden. In dit
verband kan ook gekeken worden naar de toepassing van de theorie van
samengestelde spectra. Die theorie en de verwante theorie van tensorpro-
ducten van operatoren kunnen gebruikt worden voor een uitbreiding van
scalaire en matrixwaardige functies naar operatorwaardige functies.





Chapter 1

Introduction

1.1 Space and Time

The main class of problems studied in this thesis are time-dependent para-
bolic partial differential equations (PDE). The standard model problem for
this class is the heat equation

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
+ f.

Such problems combine characteristics of both time-independent elliptic
PDEs and stiff ordinary differential equations (ODE).

To see the link with stationary elliptic PDEs, one can discretize time
using, for example, the implicit Euler method. This results in a sequence
of elliptic PDEs of the form

ui −∆t
(
∂2ui

∂x2
+
∂2ui

∂y2

)
= ui−1 + ∆tfi.

It is well established that multigrid methods are among the most efficient
methods to solve such elliptic equations.

To see the link with stiff ODEs, one can discretize space using, for ex-
ample, finite differences. This results in a system of ODEs of the form

u̇ = Lu+ f.

For discretized parabolic equations the system of ODEs is stiff and the ma-
trix L is large, sparse and structured. Many sophisticated time discretiza-
tion schemes are available to solve stiff systems of ODEs, but because the
systems can be very large, it is necessary to exploit their special structure.

1
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In this thesis we study the use of efficient multigrid techniques, tra-
ditionally used for elliptic equations, to exploit the structure arising from
discretizing the spatial variables of a parabolic equation. For the time di-
mension, we use advanced time discretization schemes developed for stiff
systems of ODEs. From the PDE point of view, the methods have to be
extended so that schemes other than the implicit Euler method can be used.
From the ODE point of view, we are looking for methods to efficiently solve
the large systems of equations involved. Complications with respect to the
spatial variables, such as varying and directionally dependent coefficients,
as well as complication with respect to time, such as time delays, are con-
sidered.

1.2 Waveform Relaxation

The question of how to combine sophisticated techniques for ODEs and
PDEs is studied in the general framework of waveform relaxation. Waveform
relaxation methods are iterative methods obtained by extending iterative
methods for systems of scalar equations to systems of differential equations.

Waveform relaxation was first studied as a practical solution method
in the context of integrated circuit simulation in [LRSV82, WSVOR85,
WSV87]. The convergence of waveform relaxation for linear systems of
ODEs was studied by Miekkala and Nevanlinna in [MN87a]. The combina-
tion of waveform relaxation with multigrid techniques was first studied in
[LO87] and [Van93]. Many other iterative methods have been extended to
waveform relaxation methods (see, for example, [Jan97, LW03]).

1.3 Outline

Chapter 2 contains a general description of the iterative methods consid-
ered in this work. The main theorems used for the convergence analysis
of these methods are also presented. First, iterative methods for systems
of equations are considered, then methods for systems of ODEs, and fi-
nally multigrid methods, applicable in both cases. This chapter serves as
a summary of well known results from the (multigrid) waveform relaxation
literature.

In Chapter 3 the model problems discussed in Chapter 2 are extended
with respect to their spatial interactions. More specifically, multigrid meth-
ods for anisotropic problems are considered. Based on experience from
the elliptic case, we develop methods for the parabolic case. The con-
vergence analysis combines the standard waveform relaxation convergence
theory with a two-grid Fourier mode analysis of multigrid for anisotropic
problems. This work was published as [VlV02].
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In Chapter 4 we take a closer look at time discretization schemes for stiff
systems of ODEs. We describe implicit Runge-Kutta and boundary value
methods as well as iterative methods for ODEs using these methods. The
standard waveform relaxation convergence analysis is extended to handle
these time discretization schemes. This work was published as [VlV05b].

Chapter 5 builds on the previous chapter were it was shown that high
order time discretization schemes can be used very effectively in conjunction
with multigrid methods. Spectral methods are an important class of high
order methods. We consider the use of Chebyshev spectral collocation as
a time discretization scheme. This work was published in the proceedings
paper [VlV05c].

In Chapter 6 the iterative methods and their analysis are extended to
partial differential equations containing one term with a constant delay.
This work was published as [VlJV05].

Chapter 7 describes a theory for the convergence analysis of iterative
methods for ODEs based on functional calculus. The underlying theory is
also applied to a two-grid convergence analysis for multigrid methods. This
work is the subject of the technical report [VlV05a] and has been submitted
for publication.

In Chapter 8 we present an overview of some implementations using
multigrid methods in the context of time-dependent problems, give some
conclusions and outline ideas for further research.

1.4 Main Messages

To conclude this introduction, we present some of the main messages of this
thesis.

� Using the right methods and principles, iterative methods for time-
independent PDEs can be transformed into methods for time-depen-
dent PDEs (with similar convergence properties).

� The main principle is to group unknowns in the time dimension. In-
terpreted from the point of view of multigrid methods this means that
we use block smoothers and do not coarsen in the time direction.

� Special multigrid methods for anisotropic elliptic equations can be
extended to anisotropic parabolic equations.

� The convergence of iterative methods for time-dependent equations is
closely related to the stability of the time discretization scheme. This
was already known for linear multistep methods and implicit Runge-
Kutta methods. The same principles can be extended to general linear
methods and boundary value methods.
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� Using high order time discretization schemes is straightforward when
multigrid can be used.

� Systems of delay differential equations (DDE) derived from delay
PDEs can also be handled by waveform relaxation.

� Not only the methods, but also the analysis can be extended from the
time-independent to the time-dependent case. Traditionally this is
done using the theory of Volterra convolution equations. It is possible
to derive a framework based on functional calculus, that clarifies the
connection with the time-independent case and highlights the impor-
tance of the stability of the time discretization scheme.

� Functional calculus simplifies the spectral analysis of iterative meth-
ods. It allows the iteration operators to be constructed from simpler
operators whose spectrum is known.



Chapter 2

Iterative Methods for
Time-Dependent
Problems

2.1 Introduction

In this chapter we introduce the iterative methods that form the basis for
the methods in the rest of this work. We first consider iterative methods for
time-independent or stationary partial differential equation (PDE). This is
useful since they form the inspiration for the methods for time-dependent
PDEs. Furthermore, the convergence analysis of the iterative methods for
time-dependent problems can be reduced to the analysis of related time-
independent problems.

The exposition in this chapter is based on two model problems. For the
time-independent case, our model problem is the Poisson equation. Dis-
cretization of this and similar elliptic PDEs leads to a large system of linear
equations. These equations can be solved using iterative methods such as
the Jacobi and Gauss-Seidel methods. For the time-dependent case, our
model problem is the heat equation. Iterative methods for this parabolic
equation can be developed based on the same principles as in the time-
independent case. For both elliptic and parabolic equations, multigrid ac-
celeration results in highly efficient methods.

Section 2.2 recalls the linear algebra needed for the time-independent
case. Classical iterative methods for the time-independent case are consid-
ered in §2.3. Section 2.4 provides the functional analysis needed for the
time-dependent case. Iterative methods for time-dependent equations are

5
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considered in §2.5. Section 2.6 explains how the multigrid principle can be
applied to obtain efficient iterative methods for time-independent as well
as time-dependent equations. Some illustrative numerical results are given
in §2.7.

2.2 Linear Algebra Preliminaries

This section introduces some linear algebra concepts and their notations.
More details can be found in books on linear algebra [Hal58, Str80, HJ90,
HJ94, Kel95] or functional analysis (see §2.4).

A norm of a vector x ∈ Cm is denoted by ‖x‖. The corresponding matrix
norm of a matrix A ∈ Cm×n is given by

‖A‖ = sup
‖x‖=1

‖Ax‖.

The vector x ∈ Cm is called an eigenvector with eigenvalue λ ∈ C of the
square matrix A ∈ Cm×m if

Ax = λx.

The set of all eigenvalues of a matrix is called its spectrum. The spectrum
of a matrix A is denoted by σ(A). The spectral radius ρ(A) of a matrix A
is the largest eigenvalue in modulus, that is

ρ(A) = max
λ∈σ(A)

|λ|.

A Toeplitz band matrix is a matrix whose elements are given by

ai,j = aj−i, for −p ≤ j − i ≤ q,
= 0, otherwise.

We denote the Toeplitz band matrix

a0 a1 · · · aq 0 · · ·

a−1
. . . . . . . . . . . .

...
. . .

a−p
. . .

0
. . .

...


as [

a−p · · · a−1 a0 a1 · · · aq

]
.
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The notation can also be used for Toeplitz operators (mapping semi-infinite
sequences) and Laurent operators (mapping doubly-infinite sequences).

The Kronecker product A⊗ B denotes the matrix defined by replacing
every element aij of A by the matrix aijB, i.e.,

A⊗B =

 a11B · · · a1nB
...

...
am1B · · · amnB

 .
If A ∈ Rm×n and B ∈ Rq×r then A⊗B ∈ Rmq×nr. For more details on the
Kronecker product see [Gra81], [MN88] and [HJ94, Ch.4].

2.3 Iterative Methods for Systems of Equa-
tions

First, we consider iterative methods for time-independent or stationary
PDEs using the Poisson equation as model problem. A finite difference
or finite element discretization of this equation leads to a large, sparse and
highly structured system of linear equations. The classical iterative meth-
ods are easy to formulate and the iteration steps can be implemented very
efficiently. Unfortunately, theoretical convergence analysis and numerical
experiments show that the convergence of these iterative methods is slow.
For systems of equation derived from elliptic equations this can be remedied
by using multigrid acceleration as explained in §2.6.

2.3.1 Model Problem

The standard model problem for elliptic equations is the Poisson equation

uxx + uyy = f, (2.1)

where u and f are functions defined on the unit square Ω = [0, 1]2. The
function u is the unknown solution and f is the source term. The subscripts
denote the second derivatives with respect to x and y. The Poisson equation
can, for example, be used to model the equilibrium temperature distribution
in a heated plate with given boundary conditions. The source function f
indicates where heat is added or removed.

To obtain a well-defined problem, boundary conditions have to be sup-
plied. The standard boundary conditions are Dirichlet, Neumann, periodic
or a combination of these. Dirichlet boundary conditions fix the value of
the solution on the boundary and can be specified using a single function g

u(x, y) = g(x, y), (x, y) ∈ ∂Ω,
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or using a function for each section of the boundary. On the unit square
this becomes

u(x, 0) = g1(x), u(1, y) = g2(y), u(x, 1) = g3(x), u(0, y) = g4(y).

Neumann boundary conditions fix the normal derivative of the solution

un(x, y) = g(x, y), (x, y) ∈ ∂Ω,

or, for the unit square,

uy(x, 0) = g1(x), ux(1, y) = g2(y), uy(x, 1) = g3(x), ux(0, y) = g4(y).

A solution u on the unit square is periodic in both directions if

u(x, y) = u(x+ 1, y) = u(x, y + 1).

The corresponding periodic boundary conditions for the Poisson equation
are

u(x, 0) = u(x, 1), uy(x, 0) = uy(x, 1),
u(0, y) = u(1, y), ux(0, y) = ux(1, y).

In what follows we always use Dirichlet boundary conditions, except in
the convergence analysis where periodic boundaries are more convenient.

We discretize the Poisson equation with finite differences. Define the
regular rectangular grid

(xi, yj) = (i∆x, j∆y), i = 0, . . . , nx, j = 0, . . . , ny,

where ∆x = n−1
x , ∆y = n−1

y and nx and ny are the number of subinter-
vals in each direction. The second order derivatives at the grid points are
approximated by

uxx(xi, yi) ≈
ui−1,j − 2ui,j + ui+1,j

∆x2
,

uyy(xi, yi) ≈
ui,j−1 − 2ui,j + ui,j+1

∆y2
,

where ui,j ≈ u(xi, yj). Using these approximations at the internal grid
points results in the following system of equations

ui−1,j − 2ui,j + ui+1,j

∆x2
+
ui,j−1 − 2ui,j + ui,j+1

∆y2
= fi,j ,

i = 1, . . . , nx − 1, j = 1, . . . , ny − 1,
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· · · · · · · · ·
· 42 43 44 45 46 47 48 ·
· 35 36 37 38 39 40 41 ·
· 28 29 30 31 32 33 34 ·
· 21 22 23 24 25 26 27 ·
· 14 15 16 17 18 19 20 ·
· 7 8 9 10 11 12 13 ·

y/j · 0 1 2 3 4 5 6 ·
↑ · · · · · · · · ·
→ x/i

Figure 2.1: Lexicographical ordering for a rectangular grid (nx = ny = 8).

where fi,j = f(xi, yj). Together with the Dirichlet boundary conditions
for u0,j , unx,j , j = 1 . . . ny − 1 and ui,0, ui,ny , i = 1 . . . nx − 1 this results
in a system of m = (nx − 1)(ny − 1) unknowns and the same number of
equations. This system of equations can be written as

Lu = f,

where the action of the linear operator L on the grid function u can be
represented in compact form using the stencil notation

(Lu)i,j =

 ∆y−2

∆x−2 −2∆x−2 − 2∆y−2 ∆x−2

∆y−2

ui,j (2.2)

(see for example [Wes92, TOS01, WJ05]). This convenient way to describe
the above equations will also be used to describe simple iterative solvers.

If the unknowns and source terms are ordered as in Figure 2.1 and placed
in vectors u and f ∈ Rm the system can be written in matrix notation as

Lu = f. (2.3)

The matrix L ∈ Rm×m has a very regular structure. It is block tridiagonal
with tridiagonal blocks on the main block diagonal and diagonal blocks on
the block off-diagonals. Figure 2.2 shows the non-zero elements of L for
nx = ny = 10.

The two-dimensional discretized Laplace operator can also be written as

L = Lx ⊗ Iny−1 + Inx−1 ⊗ Ly,

where Lx = ∆x−2
[

1 −2 1
]

and Ly = ∆y−2
[

1 −2 1
]

are the
one-dimensional discretized Laplace operators given by tridiagonal Toeplitz
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Figure 2.2: Structure of the discretized Laplace operator for nx = ny = 10.

matrices of dimensions (nx − 1) × (nx − 1) and (ny − 1) × (ny − 1). The
matrices Inx−1 and Iny−1 are the corresponding identity matrices.

Other orderings than the lexicographical one can be useful as well. Fig-
ure 2.3 illustrates the so-called red-black ordering. The grid points are
divided in two groups according to the parity of i + j. Assuming an even
number of subintervals in each dimension (nx = 2n̄x and ny = 2n̄y), the
resulting matrix can be partitioned as

L =
[
De JT

J Do

]
where De and Do are diagonal Toeplitz matrices of dimensions me × me

and mo ×mo with me = (m + 1)/2 and mo = me − 1. The matrix J is a
band matrix of dimensions mo ×me with 4 non-zero diagonals.

Many other types of discretization are possible such as methods using
finite elements or finite volumes, continuous and discontinuous Galerkin
methods, spectral methods. These methods can be written in the same
matrix form as for finite differences. The convergence analysis further on,
is given in a general form. If the matrices have appropriate properties the
analysis can be carried over to other methods.

More general equations of the form

Lu = f,



2.3. ITERATIVE METHODS FOR EQUATIONS 11

· · · · · · · · ·
· 21 46 22 47 23 48 24 ·
· 42 18 43 19 44 20 45 ·
· 14 39 15 40 16 41 17 ·
· 35 11 36 12 37 13 38 ·
· 7 32 8 33 9 34 10 ·
· 28 4 29 5 30 6 31 ·
· 0 25 1 26 2 27 3 ·
· · · · · · · · ·

Figure 2.3: Red-black ordering for a rectangular grid.

where L is a general linear elliptic operator can be handled in much the
same way. Discretization will lead to linear systems with system matrices
that have a structure similar to the discrete Laplace operator and possibly
similar properties.

2.3.2 Classical Iterative Methods

It is well known that for systems of equations involving large sparse matri-
ces, such as the ones derived from discretizing PDEs, direct methods are
often inefficient. Many iterative methods, on the other hand, deal very well
with such problems. Two classical iterative schemes are the Jacobi and
the Gauss-Seidel methods. Both can be described using a splitting of the
system matrix. Using L = L+ +L− and (2.3) the iteration scheme becomes

L+u(ν) + L−u(ν−1) = f, (2.4)

where u(ν) is the approximation after ν steps. The iteration is started from
a given initial approximation u(0). The matrix L+ is chosen such that this
system can be easily solved. For the Jacobi method L+ contains only the
diagonal of L. For the Gauss-Seidel method L+ is the lower triangular part
of L. For each method a set of m = (nx − 1)(ny − 1) scalar equations
has to be solved repeatedly. Unlike for the Jacobi method, the ordering
of the unknowns is relevant for the Gauss-Seidel method. Common order-
ings on two-dimensional grids are lexicographical (Figure 2.1) and red-black
(Figure 2.3). For discretizations on regular grids, the Jacobi, lexicographi-
cal Gauss-Seidel and red-black Gauss-Seidel can be described compactly in
stencil notation. Non-zero values in the stencils, taken from the original
stencil (2.2), are indicated by “•”.
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Jacobi:

� for all (i, j), solve[
•
]
u

(ν+1)
i,j +

 •
• •
•

u(ν)
i,j = fi,j

Lexicographic Gauss-Seidel:

� for j = 1, . . . , ny − 1
for i = 1, . . . , nx − 1, solve[

•
]
u

(ν+1)
i,j +

 •
•

u(ν+1)
i,j +

 •
•

u(ν)
i,j = fi,j

Red-Black Gauss-Seidel:

� for all (i, j) with i+ j even, solve[
•
]
u

(ν+1)
i,j +

 •
• •
•

u(ν)
i,j = fi,j

� for all (i, j) with i+ j odd, solve[
•
]
u

(ν+1)
i,j +

 •
• •
•

u(ν+1)
i,j = fi,j

A Jacobi or Gauss-Seidel iteration step can be implemented very effi-
ciently in the case of sparse matrices. The implementation is even simpler
when uniform grids are used. Unfortunately these simple splitting methods
may converge very slowly. They do, however, form the basis of the very
efficient multigrid method described in §2.6. In Chapter 3 methods appro-
priate for time-dependent parabolic equations with spatial anisotropy are
described. For more variations and other iterative methods of this kind we
refer to [TOS01].

2.3.3 Convergence Analysis

The convergence of splitting methods is analyzed using the matrix formula-
tion of the iterations. Let e(ν) = u(ν) − u be the error at iteration ν. If we
subtract the equation Lu = f , or, equivalently, L+u + L−u = f , from the
iteration L+u(ν) + L−u(ν−1) = f , we arrive at the error iteration

L+e(ν) = −L−e(ν−1).
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This can also be written as

e(ν) = −(L+)−1L−e(ν−1) = Ke(ν−1),

where K is called the iteration matrix. It is well known that the error
will converge to zero if ρ(K) < 1. The spectral radius ρ(K) is also called
the asymptotic convergence factor. In general we want ρ to be as small as
possible in order to have a rapidly converging iterative method.

For the Jacobi and Gauss-Seidel methods applied to a finite difference
discretization of the Poisson equation on a regular grid, the spectral radius
of the iteration operator can be derived exactly. In Chapter 3 an analysis
based on Fourier modes is described.

The spectral radius only tells us something about the asymptotic con-
vergence of a method. The fact that a method will eventually converge
does not always imply that it is a good method in practice. For the ex-
amples considered here, there is a close correspondence with the numerical
experiments, however.

We prefer to report convergence rates instead of convergence factors.
The convergence rate R is defined by

R = − log10(ρ) (2.5)

and can be interpreted as the average number of additional correct digits
obtained per iteration. The asymptotic convergence rate can be estimated
using

ρ(ν,µ) = µ

√
‖e(ν)‖
‖e(ν−µ)‖

, R(ν,µ) = − log10(ρ
(ν,µ))., (2.6)

For the numerical experiments we used, for example, the average of R(ν,1)

for ν = 10, . . . , 20. This corresponds to taking the geometric mean of ρ(ν,1)

or taking ν = 20, µ = 10 in (2.6). When the exact solution of the system of
equations is not known the norm of the residual f −Lu can be used instead
of the norm of the error. This will usually give very similar results.

2.4 Functional Analysis Preliminaries

Basic notions from linear algebra were sufficient to analyze the conver-
gence of the classical iterative methods for systems of equations consid-
ered in the previous section. The convergence analysis of iterative methods
for time-dependent equations is more conveniently set in the more gen-
eral abstract framework of functional analysis. Many concepts from func-
tional analysis form a generalization of ideas from linear algebra to infi-
nite dimensional linear spaces such as spaces of functions. This section
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sets some notations and recalls the functional analysis concepts that are
needed for the convergence analysis introduced in the following section.
These concepts are also used for the convergence theory developed in Chap-
ter 7. More details can be found in functional analysis textbooks such as
[DS57, HP74, Rud73, Sch71, Tay58, Lax02].

Let x be an element of a complex Banach space X, then the norm of x
is denoted by ‖x‖X or ‖x‖. The domain of a linear operator T is denoted
by D(T ). A linear operator T (with D(T ) = X) is bounded if

∃M : ∀x ∈ X : ‖Tx‖ < M‖x‖.

The norm of a bounded linear operator is given by

‖T‖ = sup
‖x‖=1

‖Tx‖.

A linear operator T is closed if the set of all points (x, Tx) (its graph) is
closed. This is equivalent to(

xn ∈ D(T ) ∧ lim
n→∞

xn = x ∧ lim
n→∞

Txn = y
)
⇒ x ∈ D(T ) ∧ y = Tx.

A closed linear operator T with D(T ) = X is bounded. A linear operator T
is compact if for every sequence {xn} with ‖xn‖ = 1, the sequence {Txn}
has a convergent subsequence.

The resolvent set of a linear operator T in X is the set of complex
numbers λ for which (λIX − T )−1 is a bounded linear operator with a
domain that is dense in X. The spectrum σ(T ) of T is the complement of
the resolvent set in C. The spectral radius of a linear operator is given by

ρ(T ) = sup
λ∈σ(T )

|λ| = lim
n→∞

‖Tn‖1/n.

The vector x is called an eigenvector with eigenvalue λ ∈ C of the operator
T if

Tx = λx.

The spectrum of a closed linear operator is a closed set. The spectrum
of a bounded linear operator is a closed and bounded set. The spectrum
of a compact linear operator is a countable set of eigenvalues with finite
multiplicity.

In a general Banach space, an iteration of the form

x(ν) = Tx(ν−1) + b

converges, for any initial x(0), to the unique solution of x− Tx = b if

ρ(T ) < 1.
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The spectral radius ρ(T ) can again be interpreted as an asymptotic conver-
gence factor.

The Kronecker product notation A⊗ B can easily be generalized when
either A or B is an operator in an infinite dimensional Banach space. The
case where both are operators in an infinite dimensional Banach space is
not straightforward [BP66, Sch69, DS70, RS73, Ich78a, Ich78b], but we do
not need this case in what follows.

The following Banach spaces of functions and sequences are used. The
functions and sequences take values from a given Banach space X, typically
C or Cm. The space C([0, tF ], X) of continuous functions on an interval
with norm

‖x‖ = max
t∈[0,tF ]

‖x(t)‖

the space Lp([0, tF ], X) of p-integrable functions on an interval with norm

‖x‖p =
∫ tF

0

‖x(t)‖pdt, 1 ≤ p <∞,

the space L∞([0, tF ], X) of essentially bounded functions on an interval with
norm

‖x‖ = ess sup
t∈[0,tF ]

‖x(t)‖,

the space lp(n,X) of p-summable sequences of length n with norm

‖x‖p =
∑

i

‖xi‖p, 1 ≤ p <∞,

‖x‖ = sup
i
‖xi‖, p =∞.

The parameters tF and n can be infinite for the Lp and lp spaces.

2.5 Iterative Methods for Systems of Ordi-
nary Differential Equations

In this section we introduce iterative methods for time-dependent equations
using the heat equation as model problem. We give a brief description of
time stepping and of continuous and discrete waveform relaxation. These
methods are considered in more detail in Chapter 4.

2.5.1 Model Problem

The standard model problem for parabolic PDEs is the heat or isotropic
diffusion equation

ut = uxx + uyy + f, (2.7)
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where u and f are now not only functions of the spatial variables (x, y) ∈
Ω = [0, 1]2, but also of time t ∈ [0, tF ]. In addition to the boundary con-
ditions, which have to be specified for all t, an initial condition u(t, x, y) =
u0(x, y) or a periodicity condition u(t, x, y) = u(t+ tF , x, y) has to be sup-
plied to obtain a well-defined problem. In what follows we mainly consider
initial value problems. If the period tF is given and a good method is
known for the initial value problem, the periodic case does not pose any
special problems. When the boundary conditions and the source term f
are independent of t, the solution will be independent of t if ut = 0 and we
recover the Poisson equation.

Using the same spatial discretization as for the stationary case leads to
the system of ordinary differential equations (ODE)

u̇ = Lu+ f, (2.8)

where u and f are vector-valued functions of time and u̇ = du
dt . In general

L can be a matrix-valued function of time, but for the convergence analysis
it will always be assumed that L is a constant matrix. The transformation
of a time-dependent PDE to a system of ODEs using a semi-discretization
in space is also referred to as the method of lines (MOL).

When finite elements are used to discretize the spatial domain the re-
sulting system of ODEs has the form

Mu̇ = Lu+ f,

where the mass matrix M is a large, sparse and structured matrix. The
iterative methods and their analysis can be extended to this case (see
[JV96a, JV96b] and §7.3.1).

2.5.2 Time Stepping

The system of equations (2.8) is a stiff system of ODEs, as is typical for
discretized parabolic equations. Since the use of explicit methods leads to
severe restrictions on the size of the time step, only implicit methods are
considered. In this chapter and the next only the backward Euler method is
used. Many more time discretization schemes are considered in Chapters 4
and 5. If we use the implicit Euler method to discretize (2.8) in time we
obtain the following fully discrete system of equations

ui = ui−1 + ∆tLui + ∆tfi, (2.9)

where ui and fi are (nx−1)×(ny−1) grid functions or equivalently vectors
in Rm. The approximations ui are obtained by solving the above system for
each time step i in order. The structure of the systems in each time step
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is the same as for the corresponding discretized elliptic equation. We can
therefore use exactly the same methods as for stationary problems. Note
that for ∆t → 0 the matrix of the systems to be solved approaches the
identity matrix. For ∆t → ∞ the system matrix approaches a multiple of
L. We can therefore expect convergence similar to the stationary case for
large ∆t and better convergence for small ∆t.

The method just described is equivalent to first discretizing the original
PDE in time and then solving the resulting sequence of stationary PDEs
as before. This is only true for linear systems with fixed grids. When non-
linearities have to be handled and adaptive grids are used, the ordering of
discretization and solution becomes important.

Applying the same splitting L = L++L− as in §2.3 results in the iteration

u
(ν)
i = u

(ν)
i−1 + ∆tL+u

(ν)
i + ∆tL−u(ν−1)

i + ∆tfi. (2.10)

Note that the loop over the time steps i forms the outer loop. For each time
step i there is an inner loop for the iterates ν.

2.5.3 Continuous Waveform Relaxation

In the time stepping method the Jacobi and Gauss-Seidel iterative methods
can be used to solve the systems (2.9). We can, however, also apply a
splitting method directly to a system of ODEs. Plugging the same splitting
L = L+ + L− as in §2.3.2 into (2.8) results in the iteration

u̇(ν) = L+u(ν) + L−u(ν−1) + f, (2.11)

where the iterates u(ν) are now vectors containing functions of time instead
of scalar values. This iterative method working on functions of time is
called continuous waveform relaxation. The algorithms below illustrate the
Jacobi, lexicographical Gauss-Seidel and red-black Gauss-Seidel methods
for a discretization in space using a general five-point stencil on a regular
rectangular grid. In each iteration a sequence of m = (nx−1)(ny−1) scalar
ODEs has to be solved.

Jacobi:

� for all (i, j), solve

u̇
(ν+1)
i,j =

[
•
]
u

(ν+1)
i,j +

 •
• •
•

u(ν)
i,j + fi,j
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Lexicographic Gauss-Seidel:

� for j = 1, . . . , ny − 1
for i = 1, . . . , nx − 1, solve

u̇
(ν+1)
i,j =

[
•
]
u

(ν+1)
i,j +

 •
•

u(ν+1)
i,j +

 •
•

u(ν)
i,j +fi,j

Red-Black Gauss-Seidel:

� for all (i, j) with i+ j even, solve

u̇
(ν+1)
i,j =

[
•
]
u

(ν+1)
i,j +

 •
• •
•

u(ν)
i,j + fi,j

� for all (i, j) with i+ j odd, solve

u̇
(ν+1)
i,j =

[
•
]
u

(ν+1)
i,j +

 •
• •
•

u(ν+1)
i,j + fi,j

2.5.4 Discrete Waveform Relaxation

To obtain fully discrete systems as in the time stepping case, the solutions
to the scalar ODEs in continuous waveform relaxation can be approximated
using an ODE integrator. Many time discretization schemes are considered
in Chapters 4 and 5. For now we consider only the backward Euler method.

The time stepping method can be interpreted as a discretization in time
resulting in a sequence of stationary PDEs which are then solved using
known iterative methods. The waveform relaxation method discretizes in
space and then applies an iterative method directly. Another way of obtain-
ing these methods is to discretize the time-dependent PDE in space and time
and to use different block iterative schemes (block Jacobi or Gauss-Seidel)
to update the unknowns. For linear problems and fixed grids the system
solved is the same, only the solution method is different.

Many other variations are possible. The time domain can be divided
in subintervals, for example, which can then be handled sequentially. This
block time stepping or time windowing techniques is discussed further in
Chapter 4.

Using the implicit Euler method to discretize (2.11) results in

u
(ν)
i = u

(ν)
i−1 + ∆tL+u

(ν)
i + ∆tL−u(ν−1)

i + ∆tfi. (2.12)

Note that this is exactly the same expression as (2.10) obtained for time
stepping using the implicit Euler method. In the discrete waveform re-



2.5. ITERATIVE METHODS FOR DIFFERENTIAL EQUATIONS 19

laxation case, however, the outer loop is over the iterations and for each
iteration ν there is an inner loop over the time steps i.

2.5.5 Convergence Analysis

The convergence analysis of iterative methods used in a time stepping
scheme is completely analogous to the analysis of the corresponding itera-
tive methods for time-independent problems. We illustrate this here for the
implicit Euler scheme applied to the discretized heat equation.

Waveform relaxation schemes were first introduced and analyzed in a
qualitative way in the electrical engineering literature [LRSV82, WSV87,
WSVOR85]. Here we follow the more quantitative convergence analysis
introduced in [MN87a, MN87b]. This analysis was extended to multigrid
waveform relaxation [LO87, Van93], implicit Runge-Kutta (IRK) time dis-
cretizations [Bur95, LO87], time periodic problems [Van93] and spatial dis-
cretizations using finite elements [JV96a, JV96b].

The convergence analysis of waveform relaxation methods can be based
on the theory of Volterra integral equations. This essentially comes down
to using a Laplace transformation with respect to time to reduce the time-
dependent problem to a set of time-independent problems with a complex
parameter. We give here the main results for continuous and discrete wave-
form relaxation, both for initial value problems on finite and infinite time
intervals and for time-periodic problems. The main lemmas used to prove
the results for initial value problems are stated as well. They are used in
Chapter 4 to obtain convergence results for more general time discretiza-
tion schemes. The results for both initial value and periodic problems are
generalized in Chapter 7.

To study the convergence of iterative methods for ODEs, we analyze the
asymptotic convergence factor of the iteration scheme. This convergence
factor is given by the spectral radius of the iteration operator. The relation
between the error e(ν) = u(ν)−u of successive approximations can be written
as

e(ν+1) = Ke(ν). (2.13)

For time stepping and discrete waveform relaxation on finite intervals the
iteration operator K is a matrix with a structure that is essentially the same
as in the time-independent case. For continuous and discrete waveform
relaxation K is a linear Volterra convolution operator. In [MN87a, MN87b,
LO87, Van93, JV96a, JV96b] it is shown that the spectral radius of the
waveform relaxation operator is given by

ρ(K) = max
z∈Σ

ρ(K(z)), (2.14)
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where K(z) is the Laplace transform of the convolution kernel of the opera-
tor K. The set Σ is a subset of the complex plane plus infinity. Its particular
structure depends on the type of waveform relaxation. We recall some re-
sults from [MN87a, MN87b, LO87, Van93, JV96a, JV96b]. A more detailed
discussion is given in Chapter 4. The time-independent case is recovered
for Σ = {0}. For continuous waveform relaxation on a finite time interval,
Σ consists of a single point, the point at infinity. For time stepping as well
as discrete waveform relaxation on a finite time interval, using a linear mul-
tistep method (LMM) as the time discretization, Σ consists of the single
point αk

βk
∆t−1, with αk and βk parameters of the LMM. For infinite time

intervals, Σ is the imaginary axis in the case of continuous time waveform
relaxation and the boundary locus of the LMM scaled by ∆t−1 for discrete
time waveform relaxation. For time-periodic problems Σ consists of a dis-
crete set of points on the imaginary axis or on the scaled boundary locus.
One can learn a lot about the convergence of different types of waveform
relaxation for a specific equation of the form (2.8) by visual inspection of
the so-called spectral picture, a contour plot of ρ(K(z)). Note that for the
Gauss-Seidel and Jacobi methods, K(z) is the iteration operator for the
corresponding method applied to

zu = Lu+ f,

which is the Laplace transform with respect to time of (2.8). This means
that it is straightforward to use a standard Fourier mode analysis to deter-
mine ρ(K(z)). An example is given in §2.6.2 for a multigrid method applied
to the heat equation. More examples are given in the following chapters.

Time Stepping

The time stepping iteration (2.10) can be written in explicit form as

u
(ν)
i = (Im −∆tL+)−1

(
u

(ν)
i−1 + ∆tL−u(ν−1)

i + ∆tfi

)
.

Define the iteration matrix as

K∆t =
(

1
∆t

Im − L+

)−1

L−.

The error e(ν) = u(ν) − u satisfies the error iteration

e(ν) = K∆te
(ν−1).

The asymptotic convergence of the iteration can be analyzed using the spec-
tral radius of the iteration matrix K∆t

ρ (K∆t) = ρ

(
K

(
1

∆t

))
,
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where the matrix K(z) is given by

K(z) = (zIm − L+)−1L−. (2.15)

This matrix K(z), where z is in general a complex parameter, will return
in the analysis of the other iterative methods considered here.

Continuous Waveform Relaxation

For linear initial value problems, a convergence analysis based on the theory
of Volterra integral equations was introduced in the seminal paper [MN87a].
We follow here the exposition of [JV96a].

The solution of the system of linear ODEs

u̇ = Lu+ f,

with initial condition u(0) = u0, is given by

u(t) = etLu0 +
∫ t

0

e(t−s)Lf(s)ds.

By applying this solution formula, the iteration (2.11) can be written in the
explicit form

u(ν) = Ku(ν−1) + ϕ,

where the iteration operator K is given by the linear Volterra convolution
operator

Ku(t) = (k ∗ u)(t) =
∫ t

0

k(t− s)u(s)ds

with matrix-valued kernel

k(t) = etL+
L−.

The error e(ν) = u(ν) − u of successive approximations satisfies the error
iteration

ė(ν+1) = L+e(ν+1) + L−e(ν),

with e(ν)(0) = 0. This can be written using the iteration operator as

e(ν+1) = Ke(ν).

The spectral radius of K on finite intervals is given by the following theorem
(p. 461 in [MN87a], Th. 3.1 in [JV96a]).

Theorem 2.5.1. Consider K as an operator in C([0, tF ],Cm) or
Lp([0, tf ],Cm) with 1 ≤ p ≤ ∞. Then, K is a bounded operator and

ρ(K) = 0. (2.16)
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The spectral radius of K on infinite intervals is given by the following
theorem (Th. 2.2 in [MN87a], Th. 3.4 in [JV96a]).

Theorem 2.5.2. Consider K as an operator in Lp([0,∞],Cm) with 1 ≤
p ≤ ∞, and assume σ(L+) ∩ C̄+ = φ. Then, K is a bounded operator and

ρ(K) = sup
z∈C̄+

ρ(K(z)). (2.17)

For time-periodic problems the iteration is given by

u̇(ν) = L+u(ν) + L−u(ν−1) + f,

with boundary conditions u(0) = u(tF ). This can again be written in the
explicit form

u(ν) = Ku(ν−1) + ϕ,

where the iteration operator K is now a periodic convolution operator (see
[VP93, Van93]). The spectral radius of the iteration operator is given be
the following theorem (Th. 4.4.13 in [Van93]).

Theorem 2.5.3. Consider K as an operator in C([0, tF ],Cm) or
Lp([0, tF ],Cm) with 1 ≤ p ≤ ∞, and assume σ(L+) ∩ Σ = φ, where
Σ = {2πin/tF , n ∈ Z}. Then, K is a compact operator and

ρ(K) = sup
z∈Σ

ρ(K(z)). (2.18)

From the inclusions

Σperiodic ⊂ ∂C̄+ ⊂ C̄+ = Σinfinite

and a maximum principle for ρ(K(z)) it follows that

ρ(Kperiodic) ≤ ρ(Kinfinite).

For a large number of points the spectral radius for the periodic case con-
verges to that of the infinite interval case. This is clearly not the case for
the finite interval case.

For completeness we give the two main lemmas about the spectral radius
of linear Volterra convolution operators that can be used to prove the above
theorems for initial value problems on finite and infinite intervals [MN87a,
Lub83, LO87, JV96a]. These lemmas are not used in what follows, but their
discrete equivalents, given in §2.5.5, are used in Chapter 4. Furthermore,
generalizations of these lemmas are proved in Chapter 7. Let H be a linear
Volterra convolution operator with a matrix-valued kernel h(t), i.e.,

Hx(t) =
∫ t

0

h(t− s)x(s)ds,
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where x(t) ∈ Cs and h(t) ∈ Cs×s. The following lemma states a well known
result about convolution operators acting on functions on a finite interval
(see [MN87a, LO87, JV96a]).

Lemma 2.5.4. Consider H as an operator in C([0, tF ],Cs) or
Lp([0, tF ],Cs), with 1 ≤ p ≤ ∞ and tF finite. Then, H is bounded and

ρ(H) = 0. (2.19)

The convergence factor of a convolution operator acting on functions on
an infinite interval, can be related to the convergence factor of the Laplace
transform of its kernel (see [MN87a, LO87, JV96a]).

Lemma 2.5.5. Consider H as an operator in Lp([0,∞],Cs) with 1 ≤ p ≤
∞, and assume h ∈ L1([0,∞],Cs×s). Then, H is bounded and

ρ(H) = sup
z∈C̄+

ρ(H(z)) = sup
ξ∈R

ρ(H(iξ)), (2.20)

where H(z) =
∫∞
0
h(t)e−ztdt denotes the Laplace transform of h.

This lemma can be proved using the Paley-Wiener theorem that gives a
necessary and sufficient condition for the boundedness of the solution of a
linear Volterra convolution equation [MN87a, Lub83, LO87, JV96a].

Discrete Waveform Relaxation

A framework for the analysis of discrete waveform relaxation was provided
in [MN87b]. We follow here the exposition of [JV96b]. A detailed discussion
for many different time discretization schemes is given in Chapter 4. We
use here the model problem with an implicit Euler discretization in time as
an illustration.

By subtracting from the iteration (2.12)

u
(ν)
i = u

(ν)
i−1 + ∆tL+u

(ν)
i + ∆tL−u(ν−1)

i + ∆tfi,

the system of equations (2.9)

ui = ui−1 + ∆tLui + ∆tfi,

we obtain the error iteration for e(ν)
i = u

(ν)
i − ui

e
(ν)
i = e

(ν)
i−1 + ∆tL+e

(ν)
i + ∆tL−e(ν−1)

i . (2.21)

This equation defines an operator K∆t that maps the sequence e(ν−1) to the
sequence e(ν). Multiplying by w−i and summing over i results in

e(ν)(w) = w−1e(ν)(w) + ∆tL+e(ν)(w) + ∆tL−e(ν−1)(w). (2.22)
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The e(ν)(w) are the discrete Laplace transforms of the sequences e(ν). This
iteration can be written as

e(ν)(w) = K

(
1

∆t
w − 1
w

)
e(ν−1)(w),

where K(z) as defined in (2.15). It can be shown that the iteration (2.21)
converges if the iteration (2.22) converges for all w with |w| ≥ 1. Further-
more, the spectral radius of K∆t is given by

ρ(K∆t) = max
|w|=1

K

(
1

∆t
w − 1
w

)
.

The curve in the complex plane described by w−1
w for |w| = 1 is the boundary

of the stability region of the implicit Euler method. The following results
can be proved for linear multistep methods (see Chapters 4 and 7).

The convergence of discrete waveform relaxation on finite intervals can
be analyzed using the following theorem (Th. 4.1 in [JV96b]).

Theorem 2.5.6. Consider K as an operator in lp(n,Cm) with 1 ≤ p ≤ ∞,
and assume σ(L+) ∩ Σ = φ. Then, K is a bounded linear operator and

ρ(K) = sup
z∈Σ

ρ(K(z)), (2.23)

where Σ =
{

1
∆t

αk

βk

}
, with αk and βk parameters of the LMM (see (4.3)).

The convergence of discrete waveform relaxation on infinite intervals can
be analyzed using the following theorem (Th. 3.1 in [MN87b], Th. 4.4 in
[JV96b]).

Theorem 2.5.7. Consider K as an operator in lp(∞,Cm) with 1 ≤ p ≤ ∞,
and assume σ(L+) ∩ Σ = φ. Then, K is a bounded linear operator and

ρ(K) = sup
z∈Σ

ρ(K(z)), (2.24)

where Σ is the complement of the interior of the stability region of the LMM
scaled by 1

∆t .

The convergence of discrete waveform relaxation for periodic problems
can be analyzed using the following theorem (Th. 4.5.10 in [Van93]).

Theorem 2.5.8. Consider K as an operator in lp(n,Cm) with 1 ≤ p ≤ ∞,
and assume σ(L+) ∩ Σ = φ. Then, K is a bounded linear operator and

ρ(K) = sup
z∈Σ

ρ(K(z)), (2.25)

where Σ is a discrete set of points on the boundary of the stability region of
the time discretization scheme scaled by 1

∆t .
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From the inclusions

Σfinite ⊂ Σinfinite and Σperiodic ⊂ ∂Σinfinite

and a maximum principle for ρ(K(z)) it follows that

ρ(Kfinite) ≤ ρ(Kinfinite) and ρ(Kperiodic) ≤ ρ(Kinfinite).

For a large number of points the spectral radius for periodic sequences
converges to that for infinite sequences. This is, in general, not the case for
the spectral radius for finite sequences. A detailed description of the sets Σ
in each of the above theorems is given in Chapters 4 and 7.

As for the theorems concerning the convergence of continuous waveform
relaxation, we provide the lemmas on which the previous theorems can be
based. Let H∆t be a discrete linear Volterra convolution operator with a
matrix-valued kernel h∆t, i.e.,

(H∆tx)i =
i∑

j=0

hi−jxj ,

where xi ∈ Cs and hi ∈ Cs×s. The convergence factor of a discrete convolu-
tion operator acting on finite sequences, can be related to the convergence
factor of the constant term of the discrete Laplace transform of its kernel
(see [MN87b, JV96b]).

Lemma 2.5.9. Consider H∆t as an operator in lp(n,Cs), with 1 ≤ p ≤ ∞
and n finite. Then, H∆t is bounded and

ρ(H∆t) = ρ(h0) = ρ(H∆t(∞)), (2.26)

where H∆t(w) =
∑n

i=0 hiw
−i denotes the discrete Laplace transform of h∆t.

For discrete convolution operators acting on infinite sequences we recall
the following lemma (see [MN87b, LO87, JV96b]).

Lemma 2.5.10. Consider H∆t as an operator in lp(∞,Cs) with 1 ≤ p ≤
∞, and assume h∆t ∈ l1(∞,Cs×s). Then, H∆t is bounded and

ρ(H∆t) = sup
|w|≥1

ρ(H∆t(w)) = sup
|w|=1

ρ(H∆t(w)), (2.27)

where H∆t(w) =
∑∞

i=0 hiw
−i denotes the discrete Laplace transform of h∆t.

These lemmas are based on a discrete equivalent of the Paley-Wiener
theorem [MN87b, Lub83, LO87, JV96b]. To apply Lemma 2.5.10, the con-
volution kernels involved have to be in l1. To this end we use a matrix
version of Wiener’s inversion theorem. For a proof we refer to [Lub83]
or [MN87b].
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Theorem 2.5.11 (Wiener’s inversion theorem). Let A∆t be a matrix-valued
sequence such that A∆t ∈ l1(∞,Cs×s), and assume that

det
∞∑

i=0

Aiw
−i 6= 0

for |w| ≥ 1. Setting
∑∞

i=0Biw
−i = (

∑∞
i=0Aiw

−i)−1, we have B∆t ∈
l1(∞,Cs×s).

The formulae for the spectral radii of continuous and discrete wave-
form relaxation operators are clearly very similar. Chapter 7 suggests an
approach that unifies the convergence analyses of the different waveform re-
laxation methods. The theory of Chapter 7 is based on functional calculus
and provides information not only about the spectral radius, but about the
whole spectrum of a more general class of operators. The theorems of this
section will be derived as special cases.

2.6 Multigrid Acceleration

In the case of discretized elliptic equations, it is well known that simple it-
erations like the Jacobi and Gauss-Seidel method converge very slowly. The
finer the discretization grid, the slower the convergence of these methods.
The convergence factor is typically of the form ρ = 1 − ch2, where h is a
measure for the grid spacing and c is a positive constant. Since we often
want to calculate on fine grids, these methods quickly become unworkable.
Fortunately, they can be used as the basis for multigrid methods. The idea
of a multigrid method is to use calculations on coarser grids to accelerate
the convergence on a fine grid. Because the calculations on the coarser grids
have to deal with less unknowns, the overall efficiency can be improved. A
multigrid method works because of the interplay between smoothing and
coarse grid correction. For discretized elliptic equations, the classical it-
erations, like Jacobi or Gauss-Seidel, are very good at removing the high
frequency components of the error. After applying a few such iterations
or smoothing steps, the remaining error can be approximated by solving a
similar problem on a coarser grid. This coarse grid correction takes cares of
the low frequency terms in the error. For many elliptic equations, multigrid
methods with grid-independent convergence factors have been developed.

The same multigrid ideas can also be applied to parabolic equations.
Here, we briefly describe a framework that fits both cases. More details are
given in Chapter 3.
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mg(x(0),A,b)→ x(3)

� x(1) ← smooth(x(0),A,b, µ1)

� b̄← R(b−Ax(1))

� x̄← cgc(Ā, b̄)

� x(2) ← x(1) + Px̄

� x(3) ← smooth(x(2),A,b, µ2)

cgc(Ā, b̄)→ x̄

� x̄← Ā−1b̄

smooth(x(0),A,b, µ)→ x(µ)

� for ν = 1, . . . , µ
solve A+x(ν) = b−A−x(ν−1)

Algorithm 2.6.1: Two-grid iteration for Ax = b, using the splitting A =
A+ + A−.

cgc(Ā, b̄)→ x̄

� if Ā is sufficiently small

� x̄← Ā−1b̄

� else

� x̄← 0

� γ times
x̄← mg(x̄, Ā, b̄)

Algorithm 2.6.2: Coarse grid correction for multigrid iteration. V-cycle:
γ = 1, W-cycle: γ = 2.

2.6.1 Standard Geometric Multigrid

Algorithm 2.6.1 gives a schematic overview of a two-grid iteration for a
linear system of the form Ax = b. The quantities x and b are elements of
a vector space approximating functions on a spatial domain. The operator
A is typically a discrete approximation of an elliptic operator. The barred
symbols indicate quantities and operators on a coarse grid. Restriction R
and prolongation P are the intergrid operators, transferring quantities from
the fine to the coarse level and vice versa. The whole iteration can be
written as x(3) = Mx(0) + q or, equivalently, e(3) = Me(0) for the errors
e(·) = x(·) − x. It is straightforward to derive the following form for the
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two-grid iteration operator

M = Sµ2CSµ1 ,

C = I−PĀ−1RA,

S = −A+−1
A−.

In the two-grid iteration the equation Āx̄ = b̄ on the coarse grid is solved
exactly. We can, however, solve this equation using the same iterative algo-
rithm. Algorithm 2.6.2 shows how the two-grid iteration can be extended
to a multigrid iteration by applying this idea recursively. Discretizations
on a hierarchy of increasingly coarser grids are used. The problem on the
coarsest level can be solved exactly or approximately by applying a few
smoothing steps.

For clarity we consider only linear problems. Non-linear problems can
be solved by embedding the multigrid algorithm as a linear solver in a New-
ton iteration or by using a non-linear multigrid scheme [TOS01]. Here, we
use the multigrid method as a solver, not as a preconditioner for a Krylov
subspace method [WOW00]. Finally, we will consider only the standard geo-
metric multigrid procedure for discretizations on regular, rectangular grids.
For irregular grids and other multigrid techniques, such as the algebraic
multigrid (AMG) method, we refer to [TOS01].

The standard geometric multigrid method for discretization (2.3) of the
elliptic equation (2.1) fits the framework described here with

x = u, b = f,

A = L, A+ = L+, A− = L−,

where x,b ∈ Rm. For a given coarsest grid, the hierarchy of grids is built up
by successively doubling the number of intervals in both the x- and the y-
direction. The restriction and prolongation operators R = R and P = P are
the standard full weighting restriction and bilinear interpolation operators.

2.6.2 Convergence Analysis

The convergence analysis of multigrid methods for time-dependent equa-
tions proceeds in much the same way as for the simple splitting methods.
We give here some results for the two-grid case. For an analysis of the gen-
eral multigrid case for time-dependent equations we refer to [JV96a, JV96b].
For an analysis of multigrid methods for time-independent equations that
uses more than two grids, we refer to [WO01].

Each of the time-stepping or waveform relaxation methods described
in §2.5.2, §2.5.3 and §2.5.4 can be plugged into the general multigrid frame-
work. For continuous waveform relaxation x and b are grids of functions.
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For time-stepping and discrete waveform relaxation x and b are grids of
scalar values or discrete, finite or infinite sequences. By applying the con-
tinuous or discrete Laplace transform to the resulting equations, it can be
seen that the Laplace transform of the corresponding multigrid iteration
operator is given by

M(z) = S(z)ν1C(z)S(z)ν2 .

The Laplace transform of the smoothing operator and coarse grid correction
operator are given by

S(z) = (zI − L+)−1L−,

C(z) = I − P (zI − L̄)−1R(zI − L).

The spectral radius of the multigrid iteration operator is related to the
spectral radius of its Laplace transform in the same way as in the theorems
of 2.5.5. That is, we have in all cases an expression of the form

ρ(M) = sup
z∈Σ

ρ(M(z)).

The sets Σ are the same as before. For the two-grid analysis, in addition to
the condition σ(L+)∩Σ = φ, the conditions σ(L)∩Σ = φ and σ(L̄)∩Σ = φ
have to hold. Further conditions are necessary for the general multigrid
case [JV96a, JV96b]. It is easily verified that these conditions hold for all
the problems considered here. The necessity of the conditions on σ(L+) and
Σ follows in a straightforward way from the theory from Chapter 7 which
requires that M(z) be a matrix-valued function analytic in a neighborhood
of Σ.

The spectral radius of the iteration operator for a multigrid method
applied to a discretized elliptic equation is typically approximated by con-
sidering the two-grid iteration. For equations with constant coefficients,
discretized on regular grids, the spectral radius for the two-grid iteration
can be efficiently calculated using a Fourier analysis. The same techniques
can be applied to find the spectral radius ρ(M(z)). This two-grid Fourier
analysis is described in Chapter 3. A similar procedure based on functional
calculus, is given in Chapter 7.

Figure 2.4 shows contour lines of the convergence rate R(M(z)) =
− log10(ρ(M(z))). The spectral radius ρ(M(z)) is calculated using a Fourier
mode analysis of a two-grid iteration with 1 pre- and 1 postsmoothing red-
black Gauss-Seidel step, full weighting restriction and bilinear interpolation.
The value at the origin gives an estimate for the convergence rate for the
multigrid method applied to the Poisson equation. Minimization along the
imaginary axis gives an estimate for the convergence rate for continuous
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Figure 2.4: Contour lines of the convergence rate R(M(z))) based on a two-
grid Fourier mode analysis. The boundary of the scaled stability domain for
the implicit Euler method with ∆t = 1/1024 is also shown (dashed line).

multigrid waveform relaxation applied to the heat equation. The figure also
shows the boundary of the scaled stability domain of the implicit Euler
method with ∆t = 1/1024. Taking the minimum over this curve results in
an estimate for the convergence rate for discrete multigrid waveform relax-
ation applied to the heat equation.

2.7 Numerical Results

To set the scene for the rest of this work, we report some numerical results
for the Poisson and the heat equation. These results indicate the kind of
efficiency to expect from multigrid methods. These results are a special case
of the results in the next chapters.

2.7.1 Poisson Equation

We consider the Poisson equation (2.1) on the unit square, discretized using
regular square grids. The boundary conditions and the source term are
chosen so that the exact solution is u = 0. The initial approximation for
the unknown internal points of the grid is set to 1. Figure 2.5 shows, for
grids with nx = ny = 2l+1, l = 2, . . . , 5, the convergence of the maximum
norm of the error for the red-black Gauss-Seidel method. It is clear that the
convergence is quite slow, especially for the finer grids. Figure 2.5 also shows
the convergence of of a multigrid V-cycle using the same red-black Gauss-
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(a) Gauss-Seidel (b) Multigrid

Figure 2.5: Reduction of the error for a Gauss-Seidel and a multigrid method
applied to the discretized Poisson equation for nx = ny = 2l+1, l = 2, 3, . . ..

R(l) l 3 4 5 6 7 8
GS 0.30 0.07 0.01 0.00 0.00 0.00 0.00
MG 1.20 0.98 0.93 0.92 0.92 0.92 0.92

Table 2.1: Convergence rates of the Gauss-Seidel and multigrid methods for
the Poisson equation on grids with nx = ny = 2l+1.

Seidel method to perform 1 pre- and 1 postsmoothing step. The fine grids
are the same as in the experiment using only Gauss-Seidel. For each fine
grid, the hierarchy of grids contains all the coarser grids down to the coarsest
grid with nx = ny = 2. Full weighting restriction and bilinear interpolation
are used to transfer between the grids. The coarsest grid contains only one
internal grid point, so that one smoothing step suffices to solve the system
there. Table 2.1 shows that the convergence rates for the multigrid method
are essentially independent of the grid spacing. The convergence rate gives
an indication of the average number of extra digits gained per iteration. It
is estimated as explained in §2.3.3. In this experiment the multigrid method
increases the accuracy by almost one digit per iteration. It should be noted
that the performance of the multigrid method deteriorates for stretched
grids where nx 6= ny. Discretizations using stretched grids are related to
the anisotropic problems considered in Chapter 3 and can be handled in the
same way.
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(a) Gauss-Seidel (b) Multigrid

Figure 2.6: Reduction of the error for a Gauss-Seidel and a multigrid method
applied to the discretized heat equation for nx = ny = 2l+1, l = 2, . . . , 5,
nt = 1, ∆t = 1.

2.7.2 Heat Equation

Consider the heat equation (2.7) discretized on the same spatial grids as
in §2.7.1. We use the implicit Euler method for the discretization of time.
The boundary conditions and the initial condition are chosen such that the
exact solution is u = 0. All the unknowns are initially 1.

Time Stepping

Figure 2.6 compares the convergence of the maximum norm of the error
for a Gauss-Seidel and a multigrid method applied to the system for one
time step (nt = 1 ) with ∆t = 1. The same red-black Gauss-Seidel and
multigrid methods as in §2.7.1 are used. The convergence rates for the
time stepping case (‘ts’) are given in Table 2.2. The convergence rates for
the multigrid method are again independent of the spacing of the spatial
grid. For the spatial discretizations considered here, ∆t = 1 is large and the
behavior of the methods approaches the situation for the Poisson equation.
For ∆t→ 0 the system to be solved essentially becomes the identity matrix.
In such cases, simple iterative methods like the Gauss-Seidel method can
be effective. Table 2.3 illustrates this for ∆t = 1/1024. This phenomenon
is related to the fact that for ∆t ≤ ∆x2 an explicit time stepping method
can be used.
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R(l) 2 3 4 5
ts GS 0.31 0.07 0.01 0.00
ts MG 1.23 1.00 0.95 0.94
wr GS 0.30 0.07 0.01 0.00
wr MG 1.20 0.98 0.93 0.92

Table 2.2: Convergence rates of the Gauss-Seidel and multigrid methods for
the heat equation on grids with nx = ny = 2l+1, nt = 1024, ∆t = 1.

R(l) 2 3 4 5
ts GS 2.76 1.47 0.61 0.19
ts MG 4.77 2.69 1.56 1.18
wr GS 0.30 0.07 0.01 0.00
wr MG 1.63 0.98 0.93 0.92

Table 2.3: Convergence rates of the Gauss-Seidel and multigrid methods for
the heat equation on grids with nx = ny = 2l+1, nt = 1024, ∆t = 1/1024.

Waveform Relaxation

We now take nt = 1024, ∆t = 1 and solve the resulting system using
discrete waveform relaxation. Figure 2.7 compares the convergence of the
maximum norm of the error for red-black Gauss-Seidel and multigrid wave-
form relaxation variants of the methods used in the previous examples. The
convergence rates for waveform relaxation (‘wr’) are given in Table 2.2. The
results for ∆t = 1/1024 are given in Table 2.3. We see that the results for
the large time step are analogous to the Poisson equation example. The
results for the small step are almost the same, which shows that in the
waveform relaxation case the multigrid acceleration is necessary even for
small time steps.

2.8 Conclusions

In this chapter we introduced multigrid methods for time-dependent equa-
tions. The classical iterative schemes for time-independent problems were
described using the Poisson equation as an example. It was then shown how
these methods can be extended to time-dependent problems. A multigrid
framework useful for both cases was described. We recalled the known re-
sults concerning the convergence analysis of all the presented methods. The
numerical results of the last section illustrate the kind of efficiency we are
aiming for.
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(a) Gauss-Seidel (b) Multigrid

Figure 2.7: Reduction of the error for a Gauss-Seidel and a multigrid wave-
form relaxation applied to the discretized heat equation for nx = ny = 2l+1,
l = 2, . . . , 5, nt = 1024, ∆t = 1.

We consider two-dimensional linear initial value problems on rectangular
domains with Dirichlet boundary conditions. Uniform grids and finite differ-
ences are used for the spatial discretization. Issues such as other boundary
conditions, irregular domains, unstructured grids and non-linearity can be
dealt with, but they are not the subject of this work. The same is true
for the use of different spatial discretization methods, as well as adaptive
methods in both space and time.

The problems in this chapter all had constant coefficients. In Chapter 3
problems with coefficients that depend on space and time are considered.
The implicit Euler method was used for the discretization of time. Chap-
ters 4 and 5 study more sophisticated time discretization schemes. In Chap-
ter 6 the class of problems under consideration is extended from PDEs to
delay PDEs. In Chapter 7 the theorems mentioned here, are rederived and
cast into a more general framework.



Chapter 3

Anisotropic Problems

In this chapter we consider anisotropic problems and extend multigrid meth-
ods developed for the stationary elliptic case to multigrid waveform re-
laxation methods for the time-dependent parabolic case. We study line-
relaxation, semicoarsening and multiple semicoarsening multigrid methods.
A two-grid Fourier-Laplace analysis is used to estimate the convergence of
these methods for the anisotropic and rotated anisotropic diffusion equa-
tion. We treat both continuous time and discrete time algorithms. The
results of the analysis are confirmed by numerical experiments.

3.1 Introduction

From the previous chapter we know that the classical model problem, that is,
the isotropic, constant coefficient heat equation, can be solved efficiently by
multigrid acceleration of the waveform relaxation method. In the stationary
case, standard multigrid methods break down when applied to anisotropic
problems, i.e., problems for which the rate of diffusion depends on the di-
rection. Figure 3.1 shows the convergence of the maximum norm of the
error for a standard multigrid method applied to the stationary diffusion
equation

−ε∂
2u

∂x2
− ∂2u

∂y2
= f.

The equation is discretized using finite differences on regular grids. A hier-
archy of 5 grids is used, where the coarsest grid has one internal point. Each
iteration consists of a multigrid V-cycle with 1 pre- and 1 postsmoothing
step of red-black Gauss-Seidel type, full weighting restriction and bilinear
interpolation. The boundary conditions and the source term f are chosen
such that u = 0. The initial approximation is set to 1. The convergence

35
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Figure 3.1: Convergence of standard multigrid for stationary anisotropic
diffusion equation for various values of ε.

is very good for the isotropic case (ε = 1), but quickly deteriorates for
anisotropic problems.

We show here that the same is true for standard multigrid waveform
relaxation methods when applied to the corresponding parabolic problems.
Several optimized methods have been proposed to handle stationary an-
isotropic problems (see [BHM00, TOS01]). In this chapter we study the
extension of these methods to time-dependent parabolic problems. We use
the time-dependent anisotropic and rotated anisotropic diffusion equation
as test equations.

This chapter is organized as follows. We first describe the model prob-
lems and their finite difference discretization on regular rectangular grids in
§3.2. Next we introduce several multigrid components in §3.3. Line relax-
ation, semicoarsening and multiple semicoarsening are proposed as methods
for anisotropic problems. Section 3.4 explains how the convergence analysis
proceeds. It is shown how the two-grid local mode Fourier analysis used
for stationary multigrid, is extended to multigrid waveform relaxation. The
results of the analysis are compared to numerical results in §3.5. This sec-
tion also contains numerical results for a more general anisotropic equation.
The methods are described as continuous waveform relaxation methods and
the implicit Euler method is used as time discretization scheme. Time dis-
cretization is discussed in more detail in Chapter 4.
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3.2 Model Problems

3.2.1 Continuous Equations

We consider time-dependent parabolic PDEs of the form

∂u

∂t
= Lu+ f, (3.1)

with L an elliptic operator and with u(t, x, y), f(t, x, y) ∈ R functions of
time t ∈ Ωt and spatial coordinates (x, y) ∈ Ω. The time interval can
be bounded, Ωt = [0, T ] or unbounded, Ωt = [0,∞). As in the previous
chapter, we only consider initial value problems on the unit square Ω =
[0, 1]2 with Dirichlet boundaries.

The test equations used in this chapter are the isotropic diffusion equa-
tion, the anisotropic diffusion equation and the rotated anisotropic diffusion
equation. These equation are standard test cases for the study of iterative
methods [Wes92]. The isotropic diffusion equation or heat equation was
already discussed in Chapter 2. It is of the form (3.1) with as operator the
Laplacian

L =
∂2

∂x2
+

∂2

∂y2
. (3.2)

The anisotropic diffusion equation has a parameter ε indicating the strength
of the diffusion in the x-direction. Its operator is given by

L = ε
∂2

∂x2
+

∂2

∂y2
. (3.3)

The isotropic diffusion equation is the special case ε = 1. The rotated
anisotropic diffusion equation has two parameters ε and β, and is of the
form (3.1) with

L = (εc2 + s2)
∂2

∂x2
+ (c2 + εs2)

∂2

∂y2
+ 2(ε− 1)cs

∂2

∂x∂y
, (3.4)

where c = cosβ and s = sinβ. The angle β indicates the direction of the
anisotropy and ε its strength. The rotated anisotropic diffusion equation
can be obtained from the anisotropic diffusion equation by rotating the
coordinate axes over an angle β.

Using the same finite differences approximation as in §2.3.1 results in a
linear system of ODEs of the form

u̇ = Lu+ f. (3.5)
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3.2.2 Discrete Equations in Stencil Notation

In stencil notation, the discretized differential operator for the isotropic
diffusion equation becomes (see (2.2))

L =

 1
∆y2

1
∆x2 − 2

∆x2 − 2
∆y2

1
∆x2

1
∆y2

 . (3.6)

The discretized operator for the anisotropic diffusion equation is

L =


1

∆y2

ε
∆x2 − 2ε

∆x2 − 2
∆y2

ε
∆x2

c2

∆y2

 . (3.7)

The discretized differential operator for the rotated anisotropic diffusion
equation becomes

L =

 −
(ε−1)cs
2∆x∆y

c2+εs2

∆y2
(ε−1)cs
2∆x∆y

εc2+s2

∆x2 −2
εc2+s2

∆x2 − 2
c2+εs2

∆y2
εc2+s2

∆x2

(ε−1)cs
2∆x∆y

c2+εs2

∆y2 − (ε−1)cs
2∆x∆y

 . (3.8)

In addition to the finite difference approximations of uxx and uyy from
§2.3.1, second order finite differences spanning two mesh intervals are used
to discretize the cross derivative term uxy in (3.4) as

uxy(xi, yi) ≈
ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

4∆x∆y
.

3.2.3 Discrete Equations in Matrix Notation

When written as matrices the discretized operators of the isotropic and
anisotropic diffusion equation have the same non-zero structure (see Fig-
ure 2.2). The 9-point stencil (3.8) for the discretized rotated anisotropic
diffusion operator together with the lexicographical ordering of unknowns
described in §2.3.1 still results in a block tridiagonal matrix with tridiago-
nal blocks. The off-diagonal blocks in the block tridiagonal structure are no
longer diagonal, but tridiagonal. Using the Kronecker product notation the
discretized operators can written in the following form. For the isotropic
diffusion operator we have

L = Lx ⊗ Iy + Ix ⊗ Ly,

where Lx = ∆x−2
[

1 −2 1
]

and Ly = ∆y−2
[

1 −2 1
]

are the
one-dimensional discretized Laplace operators given by tridiagonal Toeplitz
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matrices (see §2.3.1). The discretized anisotropic diffusion operator becomes

L = εLx ⊗ Iy + Ix ⊗ Ly.

The discretized rotated anisotropic diffusion operator can be written as

L = (εc2 + s2)Lx ⊗ Iy + (c2 + εs2)Ix ⊗ Ly + 2(ε− 1)csCx ⊗ Cy,

where the central differences are represented by the Toeplitz matrices

Cx = (2∆x)−1
[
−1 0 1

]
and

Cx = (2∆y)−1
[
−1 0 1

]
.

3.3 Multigrid for Anisotropic Problems

The multigrid algorithm described in §2.6 is based on the interplay be-
tween smoothing and coarse grid correction. The coarse grid correction is
determined by the hierarchy of grids and the restriction and prolongation
operators used to transfer between grids at different levels. The appropriate
choices for the smoother, the hierarchy of grids and the intergrid operators
depend on the properties of the PDE under consideration. In this section
we describe some standard multigrid components in the context of multigrid
for time-dependent equations.

For the isotropic diffusion equation, point relaxation (e.g., Jacobi, Gauss-
Seidel) can be used for smoothing. Standard coarsening can be used to con-
struct the hierarchy of coarser grids. As will be shown by the analysis and
numerical results, multigrid waveform relaxation with standard coarsening
and a point relaxation method as smoother breaks down for anisotropic
problems. To deal with anisotropic problems we can enhance the smoother
and use, for example, line relaxation, which updates several grid points si-
multaneously. Another approach is to keep the point relaxation and to use
semicoarsening to construct the hierarchy of grids. Semicoarsening methods
coarsen the grids in the direction of strong diffusion, that is, the direction in
which point relaxation smooths. Line relaxation and semicoarsening can be
combined. Experience with the elliptic case suggests the use of the multigrid
components given below. Their effectiveness for solving parabolic problems
will be illustrated in further sections of this chapter. For more multigrid
variants we refer to [TOS01, Wes92]. All the methods are described as work-
ing in two-dimensional grids of continuous functions. The extension to grids
of sequences representing discretized approximations is straightforward.
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3.3.1 Point Relaxation

We recall that continuous waveform relaxation for the system of ODEs

u̇ = Lu+ f,

is given by the iteration

u̇(ν+1) = L+u(ν+1) + L−u(ν) + f. (3.9)

The splitting L = L+ + L− is selected in such a way that (3.9) is easier
to solve than the original system, and the successive approximations u(ν)

converge to the solution of (3.5). The waveform relaxation variants of some
well known iterative schemes are illustrated below for a general nine-point
stencil discretization. Note that the red-black Gauss-Seidel method is only
defined for five-point stencils. Non-zero values in the stencils (taken from the
original stencil) are indicated by “•”. For each method a set of (nx−1)(ny−
1) scalar ODEs of the form ẏ = py+ q has to be solved repeatedly. Discrete
variants are obtained by using a time integration method (see Chapters 2
and 4).

Jacobi:

� for all (i, j), solve

u̇
(ν+1)
i,j =

[
•
]
u

(ν+1)
i,j +

 • • •• •
• • •

u(ν)
i,j + fi,j

Lexicographic Gauss-Seidel:

� for j = 1, . . . , ny − 1
for i = 1, . . . , nx − 1, solve

u̇
(ν+1)
i,j =

[
•
]
u

(ν+1)
i,j +

 •
• • •

u(ν+1)
i,j +

 • • ••
u(ν)

i,j +fi,j

Four-Color Gauss-Seidel:

� for all (i, j) with i odd, j odd, solve

u̇
(ν+1)
i,j =

[
•
]
u

(ν+1)
i,j +

 • • •• •
• • •

u(ν)
i,j + fi,j

� for all (i, j) with i even, j even, solve

u̇
(ν+1)
i,j =

[
•
]
u

(ν+1)
i,j +

 • •

• •

u(ν+1)
i,j +

 •
• •
•

u(ν)
i,j + fi,j
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· · · · · · ·
· 1 1 1 1 1 ·
· 1 1 1 1 1 ·
· 1 1 1 1 1 ·
· 1 1 1 1 1 ·
· 1 1 1 1 1 ·
· · · · · · ·

(a) Jacobi

· · · · · · ·
· 1 2 1 2 1 ·
· 2 1 2 1 2 ·
· 1 2 1 2 1 ·
· 2 1 2 1 2 ·
· 1 2 1 2 1 ·
· · · · · · ·

(b) red-black GS

· · · · · · ·
· 1 3 1 3 1 ·
· 4 2 4 2 4 ·
· 1 3 1 3 1 ·
· 4 2 4 2 4 ·
· 1 3 1 3 1 ·
· · · · · · ·

(c) four color GS

Figure 3.2: Grid points that can be updated simultaneously for Jacobi,
red-black and four color Gauss-Seidel relaxation.

� for all (i, j) with i even, j odd, solve

u̇
(ν+1)
i,j =

[
•
]
u

(ν+1)
i,j +

 •
• •
•

u(ν+1)
i,j +

 • •

• •

u(ν)
i,j + fi,j

� for all (i, j) with i odd, j even, solve

u̇
(ν+1)
i,j =

[
•
]
u

(ν+1)
i,j +

 • • •• •
• • •

u(ν+1)
i,j + fi,j

In the Jacobi iteration all ODEs can be solved independently. For Gauss-
Seidel methods the order in which the unknowns are updated is important.
This results in many variants. For red-black and four-color Gauss-Seidel the
order of the sub-steps is important, but in each sub-step the unknowns can
be updated independently. Figures 3.2 illustrates which grid points can be
updated simultaneously for Jacobi, Gauss-Seidel and four-color relaxation
(see also Figures 2.1 and 2.3). Note that for the lexicographic Gauss-Seidel
method applied to a nine-point stencil each grid points has to be considered
sequentially. For a five-point stencil points on diagonals could be updated
simultaneously. Four color Gauss-Seidel relaxation applied to a five-point
stencil is equivalent to red-black Gauss-Seidel relaxation.

3.3.2 Line Relaxation

Instead of considering subsystems of only one equation, one can also take
the set of ODEs on a line of the grid as the subsystems. The horizontal line
Gauss-Seidel method corresponds to the following series of computations.
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Horizontal Line Gauss-Seidel

� for j = 1, . . . , ny − 1, solve

u̇
(ν+1)
i,j =

[
• • •

]
u

(ν+1)
i,j +


• • •

u(ν+1)
i,j

+

 • • • u(ν)
i,j + fi,j , 0 < i < nx

The horizontal zebra Gauss-Seidel method corresponds to the following se-
ries of computations.

Horizontal Zebra Gauss-Seidel

� for all j odd, solve

u̇
(ν+1)
i,j =

[
• • •

]
u

(ν+1)
i,j +

 • • •
• • •

u(ν)
i,j + fi,j , 0 < i < nx

� for all j even, solve

u̇
(ν+1)
i,j =

[
• • •

]
u

(ν+1)
i,j +

 • • •
• • •

u(ν+1)
i,j + fi,j , 0 < i < nx

In these cases the equations describe a set of ny − 1 systems of ODEs
of the form ẏ = Py + q with P tridiagonal. Similarly, one can define the
vertical line and zebra Gauss-Seidel method. The so-called alternating zebra
Gauss-Seidel method consists of one horizontal zebra step, followed by one
vertical zebra step. Line relaxation methods will turn out to be useful to
handle anisotropic problems. Figure 3.3 illustrates which points are updated
simultaneously.

Horizontal line relaxation (e.g., horizontal zebra Gauss-Seidel) is ex-
pected to do well when there is strong coupling along the x-direction (e.g.,
ε � 1, β = 0). Conversely vertical line relaxation can be expected to
work well for strong coupling along the y-direction (e.g., ε � 1, β = 0).
Alternating line relaxation should work in both cases.

3.3.3 Standard Coarsening

For standard coarsening the grid spacing is doubled in both directions when
going to a coarser grid, i.e., (∆x,∆y) = (2∆x, 2∆y). Figure 3.4 shows a set
of grids constructed from a fine grid by doubling the grid spacing in both
directions.
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· · · · · · ·
· 5 5 5 5 5 ·
· 4 4 4 4 4 ·
· 3 3 3 3 3 ·
· 2 2 2 2 2 ·
· 1 1 1 1 1 ·
· · · · · · ·

(a) horizontal line

· · · · · · ·
· 1 1 1 1 1 ·
· 2 2 2 2 2 ·
· 1 1 1 1 1 ·
· 2 2 2 2 2 ·
· 1 1 1 1 1 ·
· · · · · · ·

(b) horizontal zebra

Figure 3.3: Grid points that can be updated simultaneously for horizontal
line and zebra relaxation.

(2,2) (1,1) (0,0)

Figure 3.4: A standard coarsening grid hierarchy for multigrid methods
solving a PDE, discretized on grid (2, 2).
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(a) Full weighting restriction (b) Bilinear interpolation

Figure 3.5: Schematic representation of the intergrid operators.

A grid point (ı, ) on the coarse grid corresponds to a point (i, j) =
(2ı, 2) on the fine grid. A standard coarsening strategy is often combined
with the so-called full weighting restriction operator defined by

uı, = (Ru)ı,

=
1
4
ui,j +

1
8
(
ui+1,j + ui−1,j + ui,j+1 + ui,j−1

)
+

1
16
(
ui+1,j+1 + ui+1,j−1 + ui−1,j−1 + ui−1,j+1

)
.

This can be written in stencil notation as

uı, =
1
16

 1 2 1
2 4 2
1 2 1

ui,j .

Figure 3.5 shows which values on the fine grid contribute to the restricted
value on the coarse grid. Full weighting restriction is often combined with
bilinear interpolation for the prolongation. The bilinear interpolation oper-
ator is given by

ui,j = (Pu)i,j =



uı, if i and j even

(uı−1, + uı+1,)/2 if i odd and j even

(uı,−1 + uı,+1)/2 if i even and j odd

(uı−1,−1 + uı−1,+1 + uı+1,−1 + uı+1,+1)/4

if i and j odd
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Figure 3.5 shows which values on the coarse grid are used to calculate the
interpolated values on the fine grid. When the full weighting restriction
operator and the bilinear interpolation operator are written as matrices R
and P they are related by

P = cRT , (3.10)

for some constant c. It is very common to choose the restriction and pro-
longation operator such that this relation holds. All the combinations con-
sidered here are of this type.

3.3.4 Semicoarsening and Multiple Semicoarsening

Instead of using line relaxation, one can also adapt the coarsening strategy
to the anisotropic features of the problem. Figure 3.6 shows a set of grids
constructed from a fine grid by doubling the grid spacing only in x, only in
y or in both directions. The grids used for standard coarsening are on the
diagonal of Figure 3.6. When there is strong coupling in the x-direction, one
can apply a semicoarsening strategy which means that the grid is coarsened
only in one direction, i.e., (∆x,∆y) = (2∆x,∆y). This corresponds to using
the grids on the first row of Figure 3.6. A grid point (ı, ) on the coarse grid
corresponds to a grid point (i, j) = (2ı, ) on the fine grid. Similarly, one
can do semicoarsening in the y-direction, i.e., (∆x,∆y) = (∆x, 2∆y). The
full weighting restriction operators become

uı, = (Rxu)ı, =
1
2
ui,j +

1
4
(
ui+1,j + ui−1,j

)
,

uı, = (Ryu)ı, =
1
2
ui,j +

1
4
(
ui,j+1 + ui,j−1

)
.

In stencil notation

uı, =
1
4
[

1 2 1
]
ui,j , uı, =

1
4

 1
2
1

ui,j .

The standard prolongation for semicoarsening is linear interpolation

ui,j = (Pxu)i,j =
{
uı, if i even,
(uı−1, + uı+1,)/2 if i odd,

ui,j = (Pyu)i,j =
{
uı, if j even,
(uı,+1 + uı,−1)/2 if j odd.

Multiple semicoarsening methods [Mul89, OW95] use all the grids in
Figure 3.6. We consider here the multigrid as smoother (MGS) (multigrid
as smoother) method introduced in [Oos95] and further studied in [WO98].
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(2,2) (1,2) (0,2)

(2,1) (1,1) (0,1)

(2,0) (1,0) (0,0)

Figure 3.6: A hierarchy of grids for multigrid methods solving a PDE,
discretized on grid (2, 2). Standard coarsening uses the grids (2, 2), (1, 1),
(0, 0). Semicoarsening in the x-direction uses the grids (2, 2), (1, 2), (0, 2).

One step of this method consists of a multigrid step with standard coars-
ening where the smoothing has been replaced by semicoarsening in the x-
direction followed by semicoarsening in the y-direction. This method could
also be called alternating semicoarsening. Full weighting restriction is used
to transfer from a fine to a coarse grid. To transfer from a coarse to fine
grid linear interpolation is used in the semicoarsening case, and bilinear
interpolation is used in the standard coarsening case. This is the method
used for the numerical experiments. A V-cycle is used for standard coars-
ening as well as semicoarsening. For Figure 3.6 the sequence of grids visited
would be (2,2), (1,2), (0,2), (1,2), (2,2), (2,1), (2,0), (2,1), (2,2), (1,1), (0,1),
(1,1), (1,0), (1,1), (0,0) and back. Figure 3.7 illustrates, on a grid hier-
archy with 4 levels for each direction, a variant that combines a standard
coarsening V-cycle with an x-semicoarsening V-cycle for presmoothing and
a y-semicoarsening V-cycle for postsmoothing.
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Figure 3.7: MGS iteration using V-cycles for standard coarsening, x-
semicoarsening presmoothing and y-semicoarsening postsmoothing.

3.4 Convergence Analysis

As explained in the previous chapter the convergence of an iterative method
of the form

u(ν) =Mu(ν−1) + g,

is determined by the spectral radius of the iteration operator M. If M
represents a multigrid method for the time-dependent equation

u̇ = Lu+ f, (3.11)

the spectral radius is calculated from

ρ(M) = max
z∈Σ

ρ(M(z)).

The operator M(z) is the iteration operator of the time-independent equa-
tion

zu = Lu+ f. (3.12)

The set of complex numbers Σ is determined by the way the time dimension
is handled (see §2.5.5). The system of equations (3.12) can be interpreted
as the Laplace transform of the system of ODEs (3.11), or equivalently as
the discretization of the complex Helmholtz equation corresponding to the
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time-dependent PDE that resulted in (3.11). The spectral radius ρ(M(z)) is
the spectral radius of the multigrid method for (3.12) and can be analyzed
using Fourier analysis [TOS01, Wes92, TZ95, WJ05]. In this section we
describe the standard two-grid analysis. A two-grid analysis assumes one
coarser grid on which the correction equation is solved exactly (see §2.6).
The iteration operator can then be written as

M(z) = S(z)ν2C(z)S(z)ν1 , (3.13)

where
S(z) = (zI − L+)−1L−

is the operator of the single-grid waveform relaxation method used as a
smoother, and ν1 and ν2 are the number of pre- and postsmoothing steps.
The operator C(z) is the two-grid coarse grid correction operator. It can
be written as

C(z) = I − PL̄(z)−1
RL(z), (3.14)

where L(z) = zI−L is the diffusion operator on the fine grid, L̄(z) = zĪ−L̄
is the differential operator on the coarse grid and R and P are the restriction
and prolongation operators.

The effect of the operator M(z) on the error can be analyzed using
Fourier analysis. This is a classical way to analyze multigrid and other
methods. To make the text more self contained, we present such an anal-
ysis in what follows. The Fourier analysis presented here also provides a
reference point for a similar analysis based on functional calculus and shift
operators (see §7.5). We follow the exposition of [Wes92]. Similar analyses
can be found in [TOS01, HV95, VH95]. For analyses of many more methods
and three-grid analyses we refer to [WJ05]. For the analysis we assume a
general nine-point stencil. To keep the notation concise, the dependency
on the complex parameter z is omitted at first. The parameter is easily
reintroduced when the specific model problems are considered in §3.4.9.

3.4.1 Grids and Fourier Modes

To investigate the effect of the two-grid operator M on the error, we de-
compose the error into Fourier modes and study the effect of the iteration
on these modes. For problems with Dirichlet boundary conditions a de-
composition using sinusoidal modes is most natural. This leads to the so-
called rigorous Fourier analysis. However, we use exponential Fourier modes
rather than sines since they are easier to manipulate. This type of analysis
is exact for problems with periodic boundary conditions. The results are
only approximately valid for problems with Dirichlet conditions. A heuris-
tic modification which disregards the constant Fourier modes, which do not
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appear in the error because of the Dirichlet boundary conditions, can lead
to a slightly better approximation. We do not use this heuristic here. In
general, the analysis based on exponential Fourier modes gives an indication
of the convergence to expect for other than periodic boundary conditions
when they are treated properly (some extra smoothing near the bound-
ary may be necessary for some problems for example). The so-called local
Fourier mode analysis is a closely related variant where infinite grids are
considered instead of periodic grids. The use of infinite grids clearly shows
that no boundary conditions are taken into account. For more details on
the different types of multigrid analysis see [TOS01].

We define a fine grid Ω and a coarse grid Ω by

Ω = {(xi, yj) : xi = i∆x, yj = j∆y, i = 0, . . . , nx, j = 0, . . . , ny},
Ω = {(xı, y) : xı = ı∆x, y = ∆y, ı = 0, . . . , nx,  = 0, . . . , ny},

(3.15)

where ∆x = n−1
x and ∆y = n−1

y and ∆x = n−1
x and ∆y = n−1

y . For
simplicity, the numbers nx, ny, nx, and ny are assumed to be even. For
standard coarsening we have (nx, ny) = (nx/2, ny/2), for x-semicoarsening
(nx, ny) = (nx/2, ny) and for y-semicoarsening (nx, ny) = (nx, ny/2). The
exponential Fourier mode with wavenumber θ is given by

ψ(θ)i,j = exp
(√
−1(iθx + jθy)

)
, (3.16)

where i and j are the indices of the grid points of Ω and the set of all
θ = (θx, θy) indicates the wavenumbers of the modes that can exist on the
grid Ω. Because the letters i and j are used to denote grid indices the
imaginary unit is written as

√
−1. To avoid this cumbersome notation we

introduce the notation

q(γ) = exp
(
γ
√
−1
)
,

to denote the complex number at angle γ on the unit circle. Using this
notation the exponential Fourier mode becomes

ψ(θ)i,j = q(iθx + jθy).

The exponential Fourier modes ψ(θ), on the coarse grid, are defined analo-
gously. The sets of wavenumbers are given by

θ ∈ Θ = {(θx, θy) : θα = 2πkα/nα , kα = −nα/2 + 1, . . . , nα/2 , α = x, y},
θ ∈ Θ = {(θx, θy) : θα = 2πkα/nα , kα = −nα/2 + 1, . . . , nα/2 , α = x, y}.

(3.17)
In local Fourier mode analysis the wavenumbers are allowed to vary con-

tinuously (see [TOS01, WJ05]). The analysis presented here is based on
periodic grid functions. For fine enough grids, the results are very similar.
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Every periodic grid function e(ν−1) defined on the grid Ω can be decom-
posed into Fourier modes as

e(ν−1) =
∑
θ∈Θ

ẽ(ν−1)(θ)ψ(θ). (3.18)

3.4.2 Fourier Mode Harmonics

In what follows we show that certain spaces spanned by four related expo-
nential modes are invariant under operatorM . The Fourier modes (3.16) are
eigenfunctions of the differential operator L and of the smoothing operator
for the Jacobi method SJac, provided the problem has constant coefficients
and periodic boundary conditions. Other multigrid operators map an ex-
ponential Fourier mode onto a linear combination of related Fourier modes.
For each θ ∈ Θ′ = Θ ∩ [−π

2 ,
π
2 )2, we define a vector

Ψ(θ) = [ψ(θ1)ψ(θ2)ψ(θ3)ψ(θ4)]T , (3.19)

that groups four related Fourier modes (harmonics). The wavenumbers of
the components are given by

θ1 = θ

θ2 = θ −
(

sign(θx)
sign(θy)

)
π,

θ3 = θ −
(

0
sign(θy)

)
π,

θ4 = θ −
(

sign(θx)
0

)
π.

(3.20)

The domains of the wavenumbers θ1, θ2, θ3 and θ4 are illustrated in Fig-
ure 3.8. Using the vectors Ψ(θ) from (3.19), any relation (3.18) can rewritten
as

e(ν−1) =
∑
θ∈Θ′

e(ν−1)(θ)T Ψ(θ),

where e(ν−1)(θ) is a vector of four elements. The error after applying the
iteration operator M is decomposed as

e(ν) = Me(ν−1) =
∑
θ∈Θ′

e(ν)(θ)T Ψ(θ).

We are now looking for the relation between e(ν)(θ) and e(ν−1)(θ).
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Figure 3.8: Wavenumbers of related exponential Fourier modes.
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3.4.3 Two-Grid Operator

The operators involved in the two-grid iteration realize the following map-
pings, where standard coarsening is indicated by xy, semicoarsening is indi-
cated by x or y:

L : span[ψ(θ)]→ span[ψ(θ)] ,

S : spanΨ(θ)→ spanΨ(θ) ,

R : spanΨ(θ)→

 span[ψ(θ1)] (xy)
span[ψ(θ1) ψ(θ3)] (x)
span[ψ(θ1) ψ(θ4)] (y)

,

L :
span[ψ(θ1)] → span[ψ(θ1)] (xy)
span[ψ(θ1) ψ(θ3)] → span[ψ(θ1) ψ(θ3)] (x)
span[ψ(θ1) ψ(θ4)] → span[ψ(θ1) ψ(θ4)] (y)

,

P :
span[ψ(θ1)] (xy)
span[ψ(θ1) ψ(θ3)] (x)
span[ψ(θ1) ψ(θ4)] (y)

→ spanΨ(θ) .

These mappings can be represented by matrices. The matrix corre-
sponding to an operator is called the symbol of the operator. The rest of
the analysis consists of the derivation of these symbols for the operators
in the two-grid iteration. The two-grid operator maps a component of the
error in the space spanned by Ψ(θ) into the same space. This map can be
represented by a four by four matrix. We can therefore write

e(ν)(θ) = M(θ)e(ν−1)(θ),

where M(θ) ∈ C4×4 and θ ∈ Θ′. The symbol of the two-grid operator can
be written as

M(θ) = S(θ)ν2

(
I − P (θ)L(θ)

−1
R(θ)L(θ)

)
S(θ)ν1 ,

where S(θ), P (θ), L(θ), R(θ) and L(θ) are now symbols instead of operators
and I is a four by four identity matrix. When the exponential Fourier modes
are chosen as a basis for representing the errors, the operator M becomes
block diagonal with 4× 4 blocks on the diagonal (the symbols). Therefore,
the spectral radius of the operator M corresponds to the maximum of the
spectral radii of the symbols M(z, θ), and thus

ρ(M) = max
z∈Σ

max
θ∈Θ′

ρ(M(z, θ)). (3.21)
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For the MGS (or alternating semicoarsening) method, 3 coarser grids are
used for the analysis: one corresponding to each of the semicoarsening steps
and one for the standard coarsening step. The multigrid operator (and the
corresponding symbol) can be written as follows

M = (MxMy)ν2C(MxMy)ν1 , C = I − PL̄−1RL,

Mx = Sµ2CxS
µ1 , Cx = I − PxL̄

−1
x RxL,

My = Sµ2CyS
µ1 , Cy = I − PyL̄

−1
y RyL,

(3.22)

where M is the MGS operator (symbol), C is the standard coarsening op-
erator (symbol), Mx and My are the semicoarsening multigrid operators
(symbols) and Cx and Cy are the corresponding semicoarsening coarse grid
correction operators (symbols).

We now derive for each operator the corresponding symbol.

3.4.4 Differential Operator

We assume that the spatial discretization is given by the general nine-point
stencil  s−1,1 s0,1 s1,1

s−1,0 s0,0 s1,0

s−1,−1 s0,−1 s1,−1

 . (3.23)

The resulting analysis is general enough for the model problems considered
here. For an exponential Fourier mode ψ(θ) we can write the action of the
differential operator L as

(Lψ(θ))i,j =s0,0 ψ(θ)i,j+

s0,1 ψ(θ)i,j+1 + s1,0 ψ(θ)i+1,j+
s0,−1 ψ(θ)i,j−1 + s−1,0 ψ(θ)i−1,j+
s1,1 ψ(θ)i+1,j+1 + s1,−1 ψ(θ)i+1,j−1+
s−1,−1 ψ(θ)i−1,j−1 + s−1,1 ψ(θ)i−1,j+1

To transform this expression we use relations of the form

ψ(θ)i±1,j = q((i± 1)θx + jθy) = q(±θy)ψ(θ)i,j .

In general we have

ψ(θ)i+i′,j+j′ = q(i′θx + j′θy)ψ(θ)i,j . (3.24)



54 CHAPTER 3. ANISOTROPIC PROBLEMS

We introduce the shorthands

H(θ) = s1,0 q(θx) + s−1,0 q(−θx), (3.25)
V (θ) = s0,1 q(θy) + s0,−1 q(−θy), (3.26)
D(θ) = s1,1 q(θx + θy) + s1,−1 q(θx − θy)+

s−1,−1 q(−θx − θy) + s−1,1 q(−θx + θy).
(3.27)

The action of the differential operator L on an exponential Fourier mode
ψ(θ) can be written as

(Lψ(θ))i,j = L̃(θ)ψ(θ)i,j ,

where
L̃(θ) = s0,0 +H(θ) + V (θ) +D(θ).

This means that applying the differential operator corresponds to multipli-
cation by the number L̃(θ). The exponential Fourier modes are therefore
eigenfunctions of the differential operator. It is clear from (3.24) that this
is true for any operator that can be represented in stencil notation. Since
the operator L maps each harmonic in Ψ(θ) onto a multiple of itself, the
resulting symbol for the differential operator is the diagonal matrix

L(θ) =


L̃(θ1)

L̃(θ2)
L̃(θ3)

L̃(θ4)

 .

3.4.5 Restriction Operator

Standard Coarsening

We derive the symbol for the full weighting restriction operator represented
in stencil notation as

1
16

 1 2 1
2 4 2
1 2 1

 .
After restriction of the ψ(θ) a grid point ı,  on the coarse grid has the value

(Rψ(θ))ı, =
1
4
ψ(θ)i,j+

1
8
(
ψ(θ)i,j+1 + ψ(θ)i+1,j + ψ(θ)i,j−1 + ψ(θ)i−1,j

)
+

1
16
(
ψ(θ)i+1,j+1 + ψ(θ)i+1,j−1 + ψ(θ)i−1,j−1 + ψ(θ)i−1,j+1

)
.
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Using (3.24) this can be written as

(Rψ(θ))ı, =
(

1
4

+
1
8
(
q(θx) + q(−θx) + q(θy) + q(−θy)

)
+

1
16
(
q(θx)q(θy) + q(−θx)q(θy)+

q(θx)q(−θy) + q(−θx)q(−θy)
))
ψ(θ)i,j

=
1
4

(1 + cos(θx) + cos(θy) + cos(θx) cos(θy))ψ(θ)i,j .

Since (i, j) = (2ı, 2) and (θx, θy) = (2θx, 2θy) (see (3.15) and (3.17)), we
find that

ψ(θ) = q(iθx + jθy) = q(ıθx + θy) = ψ(θ).

We can therefore write Rψ(θ) as a function of the Fourier mode ψ(θ) on the
coarse grid as

(Rψ(θ))i,j = R̃(θ)ψ(θ)ı,. (3.28)

where

R̃(θ) =
1
4
(
1 + cos(θx) + cos(θy) + cos(θx) cos(θy)

)
=

1
4
(
1 + cos(θx)

)(
1 + cos(θy)

)
.

The restriction operator maps the Fourier mode ψ(θ) on the fine grid onto
the corresponding mode ψ(θ) on the coarse grid. For standard coarsening
we have (θx, θy) = (2θx, 2θy). Hence, the components θ

1
, θ

2
, θ

3
and θ

4
are

equal up to a multiple of 2π (see (3.20)). In other words, the fine grid Fourier
modes ψ(θ1), ψ(θ2), ψ(θ3) and ψ(θ4) are mapped onto a single coarse grid
Fourier mode ψ(θ

1
) = ψ(θ

2
) = ψ(θ

3
) = ψ(θ

4
). The symbol for standard

coarsening full weighting restriction therefore becomes

R(θ) =
[
R̃(θ1) R̃(θ2) R̃(θ3) R̃(θ4)

]
.

Semicoarsening

In the case of x- and y-semicoarsening the stencils for the full weighting
restriction operators are

1
4
[

1 2 1
]
,

1
4

 1
2
1

 .
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For x-coarsening restriction assigns to a grid point (ı, ) on the coarse grid
the value

(Rψ(θ))ı, =
1
4

(
2ψ(θ)i,j +

(
ψ(θ)i+1,j + ψ(θ)i−1,j

))
=

1
2
(
1 + cos(θx)

)
ψ(θ)i,j .

Again we find that ψ(θ)i,j = ψ(θ)ı, so that we have

(Rψ(θ))i,j = R̃(θ)ψ(θ)ı,,

where

R̃(θ) =
1
2

(1 + cos(θx)) .

In the same way we find for y-coarsening

R̃(θ) =
1
2

(1 + cos(θy)) .

For x-coarsening the equality (up to a multiple of 2π) only holds for the
x-component of θ

1
, θ

2
, θ

3
and θ

4
. The modes ψ(θ1) and ψ(θ4) are mapped

onto the modes ψ(θ
1
) = ψ(θ

4
). The modes ψ(θ2) en ψ(θ3) are mapped onto

ψ(θ
2
) = ψ(θ

3
). For y-coarsening the modes ψ(θ1) and ψ(θ3) are mapped

onto ψ(θ
1
) = ψ(θ

3
) and the modes ψ(θ2) and ψ(θ4) onto ψ(θ

2
) = ψ(θ

4
).

The symbols for full weighting restriction for x- and y-semicoarsening be-
come

R(θ) =
[
R̃(θ1) 0 0 R̃(θ4)

0 R̃(θ2) R̃(θ3) 0

]
,

R(θ) =
[
R̃(θ1) 0 R̃(θ3) 0)

0 R̃(θ2) 0 R̃(θ4)

]
.

3.4.6 Differential Operator on the Coarse Grid

Standard Coarsening

When using standard coarsening the restriction operator maps all modes
onto ψ(θ). The symbol of the differential operator on the coarse grid can
be written as

L(θ) =
[
L̃(θ

1
)
]
.
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Semicoarsening

When using x-semicoarsening the restriction operator maps all modes onto
ψ(θ

1
) or ψ(θ

3
). The symbol of the differential operator on the coarse grid

can be written as

L(θ) =

[
L̃(θ

1
)

L̃(θ
3
)

]
.

For y-coarsening we find

L(θ) =

[
L̃(θ

1
)

L̃(θ
4
)

]
.

3.4.7 Prolongation Operator

Standard Coarsening

In the case of standard coarsening we use the bilinear interpolation operator
to transfer from coarse to fine grids. If the grid indices i and j on the fine
grid are both even, we transfer the value at the corresponding point on the
coarse grid. If i is even and j is odd (and vice versa), then the point on
the fine grid is between two points on the coarse grid. The value on the
fine grid is the average of the value at the two points on the coarse grid. If
both i and j are odd the value on the fine grid is the average of the four
surrounding points on the coarse grid.

For a Fourier mode ψ(θ) we find using (3.24) and ψ(θ)ı, = ψ(θ)i,j that

(Pψ(θ))i,j =



ψ(θ)i,j if i and j even,

cos(θx)ψ(θ)i,j if i odd and j even,

cos(θy)ψ(θ)i,j if i even and j odd,

cos(θx) cos(θy)ψ(θ)i,j if i and j odd.

(3.29)

The grid function ψ(θ) or ψ(θ) is clearly not an eigenfunction of the prolon-
gation operator. But we can show that the prolongation operator maps the
function ψ(θ) onto a function in the space spanned by Ψ(θ). We formulate
this property in a more general form. Every grid function satisfying

φi,j =



α00ψ(θ1)i,j if i and j even,

α10ψ(θ1)i,j if i odd and j even,

α01ψ(θ1)i,j if i even and j odd,

α11ψ(θ1)i,j if i and j odd.

(3.30)
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can be represented in the space spanned by Ψ(θ). This means that there
are coefficients a1, a2, a3 and a4 such that

φ = a1ψ(θ1) + a2ψ(θ2) + a3ψ(θ3) + a4ψ(θ4). (3.31)

The proof of this property is based on the relation between the values of
ψ(θ1) and the other basis functions evaluated at the grid points. For ψ(θ2)
we find

ψ(θ2)i,j = q(−π sign(θx)i)q(−π sign(θy)j)ψ(θ1)i,j (3.32)

or

ψ(θ2)i,j =
{
ψ(θ1)i,j if i and j both even or both odd
−ψ(θ1)i,j otherwise (3.33)

Similar expressions hold for ψ(θ3) and ψ(θ4). They are summarized in the
following table.

ψ(θ1) ψ(θ2) ψ(θ3) ψ(θ4)
i even, j even 1 1 1 1
i odd, j odd 1 1 −1 −1
i even, j odd 1 −1 −1 1
i odd, j even 1 −1 1 −1

Together with (3.30) and (3.31) this results in the equations

α00ψ(θ1)ij = a1ψ(θ1)ij + a2ψ(θ1)ij + a3ψ(θ1)ij + a4ψ(θ1)ij ,

α11ψ(θ1)ij = a1ψ(θ1)ij + a2ψ(θ1)ij − a3ψ(θ1)ij − a4ψ(θ1)ij ,

α01ψ(θ1)ij = a1ψ(θ1)ij − a2ψ(θ1)ij − a3ψ(θ1)ij + a4ψ(θ1)ij ,

α10ψ(θ1)ij = a1ψ(θ1)ij − a2ψ(θ1)ij + a3ψ(θ1)ij − a4ψ(θ1)ij .

The relation between the α coefficients in (3.30) and the a coefficients in
(3.31) can be written as

α00

α11

α01

α10

 =


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1



a1

a2

a3

a4

 .
The a coefficients can therefore be found as

a1

a2

a3

a4

 = T−1


α00

α11

α01

α10

 ,
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where

T =


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 , T−1 =
1
4
T.

For bilinear interpolation we derive from (3.29) that
α00 = 1,
α11 = cos(θx) cos(θy),
α01 = cos(θy),
α10 = cos(θx).

which leads to
Pψ(θ) = P (θ)Ψ(θ)

with

P (θ) =
1
4
(
1 + cos(θx) + cos(θy) + cos(θx) cos(θy)

)
=

1
4
(
1 + cos(θx)

)(
1 + cos(θy)

)
.

Note that
P (θ) = R(θ)T .

This is the equivalent of relation (3.10) that holds for the corresponding
operators. The same relation holds for all the other restriction and prolon-
gation combinations considered here.

Semicoarsening

For x-coarsening linear interpolation is used as the interpolation operator.
Fine grid points with even i can take a value directly from the coarse grid.
Points with odd i take the average of the two neighboring points on the
coarse grid. Prolongation of a Fourier mode ψ(θ) gives at the fine grid
point (i, j)

(Pψ(θ))i,j =

 ψ(θ)i,j if i even,

cos(θx)ψ(θ)i,j if i odd.

The coefficients in (3.31) are{
α00 = α01 = 1,
α10 = α11 = cos(θx).

Again we find
Pψ(θ) = P (θ)Ψ(θ)

with P (θ) = R(θ)T . This last relation also holds for y-coarsening.
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3.4.8 Smoothing Operator

We derive the symbol for a smoothing operator that transforms ψ(θ1),
ψ(θ2), ψ(θ3) and ψ(θ4) into functions of the form (3.30). Red-Black, four
color and zebra line relaxation are all smoothers of this kind. If we apply
these smoothers to ψ(θ1) then we become grid functions of the form (3.30)
with α coefficients given by the following expressions. The same notations
as in the previous sections are used.

Red-Black {
α11(θ1) = α00(θ1) = −(H(θ1) + V (θ1))/s0,0 ,
α10(θ1) = α01(θ1) = α2

11(θ
1).

Four Color
α11(θ1) = −(H(θ1) + V (θ1) +D(θ1))/s0,0 ,
α00(θ1) = −(H(θ1) + V (θ1) + α11(θ1)D(θ1))/s0,0 ,
α01(θ1) = −(α11(θ1)H(θ1) + α00(θ1)V (θ1) +D(θ1))/s0,0 ,
α10(θ1) = −(α00(θ1)H(θ1) + α11(θ1)V (θ1) + α01(θ1)D(θ1))/s0,0 .

Horizontal Zebra{
α11(θ1) = α01(θ1) = −(V (θ1) +D(θ1))/(s0,0 +H(θ1)),
α10(θ1) = α00(θ1) = α2

11(θ
1).

Vertical Zebra{
α11(θ1) = α10(θ1) = −(H(θ1) +D(θ1))/(s0,0 + V (θ1)),
α01(θ1) = α00(θ1) = α2

11(θ
1).

The corresponding a coefficients are the first columns of the symbol S(θ),
which is therefore equal to

T−1


α00(θ1)
α11(θ1)
α01(θ1)
α10(θ1)

 .
For the mode ψ(θ2) we have to replace ψ(θ1) in (3.30) by ψ(θ2). Using the
relation (3.33) between ψ(θ1) and ψ(θ2) we find that

φi,j =



α00ψ(θ2)i,j = α00ψ(θ1)i,j if i and j even,

α10ψ(θ2)i,j = α10ψ(θ1)i,j if i odd and j even,

α01ψ(θ2)i,j = −α01ψ(θ1)i,j if i even and j odd,

α11ψ(θ2)i,j = −α11ψ(θ1)i,j if i and j odd.
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so that we can use the following substitution
α00

α11

α01

α10

→


α00

α11

−α01

−α10

 .
This corresponds to a component-wise multiplication by the second column
of T. Analogous results hold for the modes ψ(θ3) and ψ(θ4). This can be
written in a compact form as

S(θ) = T−1(T�A), (3.34)

where T�A denotes component-wise or Hadamard multiplication and

A =


α00(θ1) α00(θ2) α00(θ3) α00(θ4)
α11(θ1) α11(θ2) α11(θ3) α11(θ4)
α01(θ1) α01(θ2) α01(θ3) α01(θ4)
α10(θ1) α10(θ2) α10(θ3) α10(θ4)

 . (3.35)

For the calculation of A we can use the relations

H(θ1) = −H(θ2) = H(θ3) = −H(θ4),
V (θ1) = −V (θ2) = −V (θ3) = V (θ4),
D(θ1) = D(θ2) = −D(θ3) = −D(θ4).

3.4.9 Summary

Figure 3.9 illustrates the structure of the symbols for each operator making
up the two-grid iteration operator. In this section we bring together the
expressions for these symbols, give simplified expressions for some smoothers
and give expressions for s0,0 , H(θ), V (θ) and D(θ) for the three model
problems.

Coarse Grid Correction

The following three relations hold for all the coarse grid correction operators
considered here (see also (3.20)).

L̃(θ) = s0,0 +H(θ) + V (θ) +D(θ)

L(θ) =


L̃(θ1)

L̃(θ2)
L̃(θ3)

L̃(θ4)


P (θ) = R(θ)T
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Figure 3.9: Structure of the symbol of the two-grid operator.

Standard Coarsening

(θ
1

x, θ
1

y) = (2θ1x, 2θ
1
y)

L(θ) =
[
L̃(θ

1
)
]

R̃(θ) =
1
4
(
1 + cos(θx)

)(
1 + cos(θy)

)
R(θ) =

[
R̃(θ1) R̃(θ2) R̃(θ3) R̃(θ4)

]
X-Coarsening

(θ
1

x, θ
1

y) = (2θ1x, θ
1
y), (θ

3

x, θ
3

y) = (2θ3x, θ
3
y)

L(θ) =
[
L̃(θ1)

L̃(θ3)

]

R̃(θ) =
1
2

(1 + cos(θx))

R(θ) =
[
R̃(θ1) 0 0 R̃(θ4)

0 R̃(θ2) R̃(θ3) 0

]
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Y-Coarsening

(θ
1

x, θ
1

y) = (θ1x, 2θ
1
y), (θ

4

x, θ
4

y) = (θ4x, 2θ
4
y)

L(θ) =
[
L̃(θ1)

L̃(θ4)

]

R̃(θ) =
1
2

(1 + cos(θy))

R(θ) =
[
R̃(θ1) 0 R̃(θ3) 0)

0 R̃(θ2) 0 R̃(θ4)

]

Smoothing

The general expressions obtained with (3.34) can be simplified for red-black
Gauss-Seidel smoothing as well as for horizontal and vertical zebra Gauss-
Seidel smoothing.

Red-Black If we define

µ1 = α00(θ1) = −(H(θ1) + V (θ1))/s0,0 ,

µ2 = α00(θ3) = −(H(θ1)− V (θ1))/s0,0 ,

then the matrix A in (3.35) can be written as

ARB(θ) =


µ1 −µ1 µ2 −µ2

µ1 −µ1 µ2 −µ2

µ2
1 µ2

1 µ2
2 µ2

2

µ2
1 µ2

1 µ2
2 µ2

2

 .
The symbol of the smoother becomes

SRB(θ) =
1
2


µ1(1 + µ1) −µ1(1 + µ1)
µ1(1− µ1) −µ1(1− µ1)

µ2(1 + µ2) −µ2(1 + µ2)
µ2(1− µ2) −µ2(1− µ2)

 .

Four Color For four color smoothing we use the general expression (3.34).
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Horizontal Zebra If we define

µ1 = α11(θ1) = (−V (θ1)−D(θ1))/(s0,0 +H(θ1)),

µ2 = α11(θ2) = (V (θ1)−D(θ1))/(s0,0 −H(θ1)),

then the matrix A in (3.35) can be written as

AHZ(θ) =


µ2

1 µ2
2 µ2

1 µ2
2

µ1 µ2 −µ1 −µ2

µ1 µ2 −µ1 −µ2

µ2
1 µ2

2 µ2
1 µ2

2

 .
The symbol of the smoother becomes

SHZ(θ) =
1
2


µ1(1 + µ1) µ1(1 + µ1)

µ2(1 + µ2) µ2(1 + µ2)
−µ1(1− µ1) −µ1(1− µ1)

−µ2(1− µ2) −µ2(1− µ2)

 .
Vertical Zebra If we define

µ1 = α11(θ1) = (−H(θ1)−D(θ1))/(s0,0 + V (θ1)),

µ2 = α11(θ2) = (H(θ1)−D(θ1))/(s0,0 − V (θ1)),

then the matrix A in (3.35) can be written as

AVZ(θ) =


µ2

1 µ2
2 µ2

2 µ2
1

µ1 µ2 −µ2 −µ1

µ2
1 µ2

2 µ2
2 µ2

1

µ1 µ2 −µ2 −µ1

 .
The symbol of the smoother becomes

SVZ(θ) =
1
2


µ1(1 + µ1) µ1(1 + µ1)

µ2(1 + µ2) µ2(1 + µ2)
−µ2(1− µ2) −µ2(1− µ2)

−µ1(1− µ1) −µ1(1− µ1)

 .
Alternating Zebra Alternating zebra smoothing consists of one horizon-
tal zebra smoothing step followed by one vertical zebra smoothing step. The
symbol of the alternating zebra smoother can be found as

S(θ)AZ = S(θ)HZS(θ)VZ.

We follow the suggestion of Stüben and Trottenberg as cited in [Wes92]
and use a variant of vertical zebra that updates the lines with even grid
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index i first. This leads, for the classical multigrid cycle, to slightly better
convergence factors and identical results for β = 0 and β = π

2 when applied
to the rotated anisotropic diffusion equation. We give the symbol SVZ′(θ)
for this variant of vertical zebra smoothing.

If we define

µ1 = α00(θ1) = (−H(θ1)−D(θ1))/(s0,0 + V (θ1)),

µ2 = α00(θ2) = (H(θ1)−D(θ1))/(s0,0 − V (θ1)),

then the matrix A in (3.35) can be written as

AVZ′(θ) =


µ1 µ2 −µ2 −µ1

µ2
1 µ2

2 µ2
2 µ2

1

µ1 µ2 −µ2 −µ1

µ2
1 µ2

2 µ2
2 µ2

1

 .
The symbol of the smoother becomes

SVZ′(θ) =
1
2


µ1(1 + µ1) −µ1(1 + µ1)

µ2(1 + µ2) −µ2(1 + µ2)
µ2(1− µ2) −µ2(1− µ2)

µ1(1− µ1) −µ1(1− µ1)

 .
The symbol for the alternating zebra smoothing operator is found as

SAZ(θ) = SHZ(θ)SVZ′(θ).

Model Problems

For time dependent problems we perform the two-grid analysis on a system
of the form

(zI − L)u = f,

where L is one of the discrete operators discussed in §3.2. The complex
parameter z can be considered as a Helmholtz coefficient and appears in
the central stencil coefficient s0,0 . This shows again that for our model
problems, M depends on z through L, L̄ and S, but not through P and R.
Using the stencils (3.6)-(3.8), we can specialize the stencil (3.23) and the
shorthands (3.25)-(3.27).
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Isotropic Diffusion Equation

s0,0 = z +
2

∆x2
+

2
∆x2

H(θ) = −2 cos(θx)
∆x2

V (θ) = −2 cos(θy)
∆y2

D(θ) = 0

Anisotropic Diffusion Equation

s0,0 = z + ε
2

∆x2
+

2
∆x2

H(θ) = −ε2 cos(θx)
∆x2

V (θ) = −2 cos(θy)
∆y2

D(θ) = 0

Rotated Anisotropic Diffusion Equation

s0,0 = z + (εc2 + s2)
2

∆x2
+ (εs2 + c2)

2
∆y2

H(θ) = −(εc2 + s2)
2 cos(θx)

∆x2

V (θ) = −(εs2 + c2)
2 cos(θy)

∆y2

D(θ) = −(ε− 1)cs
cos(θx + θy)− cos(θx − θy)

∆x∆y

3.5 Numerical Results

For elliptic anisotropic PDEs robust methods have been developed. We try
to establish here whether the conclusions for these methods carry over to
the parabolic case. We study three classical model problems: the isotropic
diffusion equation (ε = 1, β = 0), the anisotropic diffusion equation (ε ∈ R,
β = 0) and the rotated anisotropic diffusion equation (ε ∈ R, β ∈ [0, 2π)).
The equations are discretized on a grid with spacings ∆x = ∆y = h = 2−5.
The implicit Euler method (BDF1) with a constant time step ∆t = 10−3

(nt = 1000, T = 1) is used as ODE solver. Other time discretizations are
discussed in Chapter 4. The boundary and initial conditions and the source
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Figure 3.10: Norm of defect for single-grid waveform relaxation (upper
curve, red-black Gauss-Seidel) and multigrid waveform relaxation (lower
curve, red-black Gauss-Seidel smoother, full-weighting restriction, bilinear
interpolation, V(1,1)-cycle). (ε = 1, β = 0, h = 2−5, ∆t = 10−3, T = 1)

term f for (3.1) are set to 0. This corresponds to a solution u = 0. For the
initial approximation u(0), a value chosen from a uniform distribution on
[−1, 1] is assigned to each grid point. The multigrid hierarchy has 5 levels
so that the coarsest grid contains one internal point and can be solved by
performing 1 smoothing step. In the numerical experiments the convergence
factor is estimated by taking the quotient of the norms of the defects after
the 20th and 19th iteration.

3.5.1 Isotropic Diffusion Equation

We first consider the isotropic diffusion equation, an important case both
from theoretical and practical point of view. The diffusion equation is given
by

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
+ f. (3.36)

This corresponds to (3.1) where the operator is the Laplacian (3.2).
Figure 3.10 illustrates the benefits of multigrid acceleration for this prob-

lem. The upper curve shows the norm of the defect for single-grid red-black
Gauss-Seidel waveform relaxation. The lower curve shows the norm of the
defect on the fine grid for multigrid waveform relaxation. We used a red-
black Gauss-Seidel smoother and standard coarsening with a V-cycle using
one pre- and one postsmoothing step.
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Figure 3.11: Spectral picture for two-grid waveform relaxation with red-
black Gauss-Seidel as smoother and standard coarsening, applied to the
discretized isotropic diffusion equation (ε = 1, β = 0, h = 2−5). The solid
lines represent contour lines of log10(ρ(M(z))), the dashed lines represent
the scaled boundary loci of the BDF1-5 methods (∆t = 10−3).

Figure 3.11 illustrates the Fourier-Laplace analysis graphically. The
dashed lines are the scaled boundary loci over which one has to maximize
ρ(M(z)) to find ρ(M) for discrete waveform relaxation on infinite time-
intervals (see section 2.5.5). The contour lines of log10 ρ(M(z)) are repre-
sented by solid lines. The convergence factor can be determined visually by
finding the maximum of ρ(M(z)) over the appropriate set Σ. We can see
for example that the convergence factor decreases as we move away from
the origin. This illustrates the fact that ρ = 0 at infinity, corresponding to
the continuous finite interval case. The convergence factor for the discrete
finite interval case can be found at a point on the positive real axis.

For the analysis, the infinite interval case is chosen because in prac-
tice this gives an accurate approximation of the observed convergence fac-
tor [Van93, JV96a]. This is motivated by an argument based on pseudospec-
tra in [LW97, JOW98]. The numerical results of the analysis are given in
the tables discussed in the next two sections.

3.5.2 Anisotropic Diffusion Equation

The anisotropic diffusion equation is given by

∂u

∂t
= ε

∂2u

∂x2
+
∂2u

∂y2
+ f. (3.37)
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Figure 3.12: Spectral picture for two-grid waveform relaxation with red-
black Gauss-Seidel as smoother and standard coarsening, applied to the
discretized anisotropic diffusion equation. (ε = 10−3, β = 0, h = 2−5) The
solid lines represent contour lines of log10(ρ(M(z))), the dashed lines rep-
resent the scaled boundary loci of BDF1 to BDF5 (∆t = 10−3).

It is of the form (3.1) with operator (3.3). One expects from experience
with elliptic problems that point relaxation methods are inadequate for
solving anisotropic problems. This is confirmed by Figure 3.12 which shows
a spectral picture for an anisotropic problem. The line for ρ = 1 (almost)
touches the origin. Therefore (3.21) will result in convergence factors very
close to 1 for Σ sets corresponding to an infinite time interval. Figure 3.13
shows that when we use vertical zebra Gauss-Seidel as smoother we get a
small convergence factor for ε� 1. The numerical values of the theoretical
and observed asymptotic convergence factors can be found in a set of tables
given below.

Table 3.1 illustrates the effect of ε. It shows the two-grid theoretical
values, the two-grid observed values and the V- and W-cycle results. Large
convergence factors are found for ε 6= 1 (red-black Gauss-Seidel smoothing
and standard coarsening). In Tables 3.3 to 3.6 convergence factors for other
combinations of smoothing and coarsening are given. The first column of
each table indicates the smoothing and coarsening strategies used (abbrevia-
tions are explained in Table 3.2). Table 3.3 gives the theoretical convergence
factor calculated by the two-grid Fourier-Laplace analysis. Table 3.4 gives
convergence factors observed for two-grid waveform relaxation (the correc-
tion equation on the coarse grid is approximated by 100 smoothing steps).
The observed convergence factors for multigrid waveform relaxation with
V- and W-cycles are given in Tables 3.5 and 3.6. Table 3.1 compares these
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Figure 3.13: Spectral picture for two-grid waveform relaxation with ver-
tical zebra Gauss-Seidel as smoother and standard coarsening, applied to
the discretized anisotropic diffusion equation. (ε = 10−3, β = 0, h = 2−5)
The solid lines represent contour lines of log10(ρ(M(z))), the dashed lines
represent the scaled boundary loci of BDF1 to BDF5 (∆t = 10−3).

four cases for red-black Gauss-Seidel smoothing and standard coarsening.
The observed two-grid convergence factors are very close to the theoretical
two-grid convergence factor. The W-cycle is, in this case, completely equiv-
alent to the two-grid cycle. In most cases the results for the V-cycle are
comparable.

ε 10−4 10−3 10−2 10−1 2−1 1 2 101 102 103 104

two-grid (th.) 0.994 0.990 0.956 0.680 0.197 0.075 0.197 0.683 0.961 0.996 1.000
V-cycle (num.) 0.936 0.931 0.890 0.648 0.210 0.108 0.209 0.649 0.898 0.937 0.937
W-cycle (num.) 0.936 0.931 0.890 0.646 0.188 0.072 0.188 0.647 0.898 0.937 0.937
two-grid (num.) 0.936 0.931 0.890 0.646 0.188 0.072 0.188 0.647 0.898 0.938 0.937

Table 3.1: Convergence factors for waveform relaxation with red-black
Gauss-Seidel and standard coarsening, applied to the anisotropic diffu-
sion equation. (β = 0, h = 2−5, ∆t = 10−3, BDF1, th.=theoretical,
num.=numerical)
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F red-black (β = k π
2 ) or four-color S standard coarsening

H horizontal zebra X x-semicoarsening
V vertical zebra Y y-semicoarsening
A alternating zebra A alternating semicoarsening

Table 3.2: Abbreviations used to indicate the smoothing (first column) and
coarsening (second column) strategies used. E.g., HY : horizontal zebra
Gauss-Seidel with y-semicoarsening.

ε 10−4 10−3 10−2 10−1 2−1 1 2 101 102 103 104

FS 0.994 0.990 0.956 0.680 0.197 0.075 0.197 0.683 0.961 0.996 1.000
HS 0.994 0.990 0.956 0.680 0.197 0.093 0.093 0.093 0.093 0.093 0.093
VS ∼10−7 ∼10−4 0.014 0.145 0.114 0.093 0.197 0.683 0.961 0.996 1.000
AS ∼10−7 ∼10−4 0.013 0.110 0.043 0.029 0.034 0.070 0.090 0.093 0.093
FX 0.994 0.990 0.956 0.680 0.197 0.072 0.061 0.053 0.013 0.001 ∼10−3

FY 0.093 0.093 0.093 0.090 0.080 0.072 0.197 0.683 0.961 0.996 1.000
FA 0.004 0.004 0.004 0.001∼10−4 ∼10−5 ∼10−4 ∼10−3 ∼10−3 ∼10−5 ∼10−7

HY 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093
VX ∼10−7 ∼10−4 0.014 0.145 0.114 0.093 0.072 0.053 0.013 0.001 ∼10−3

Table 3.3: Theoretical convergence factors for two-grid waveform relaxation
with different combinations of smoothing and coarsening strategies, applied
to the anisotropic diffusion equation. (β = 0, h = 2−5, ∆t = 10−3, BDF1,
infinite time interval)

ε 10−4 10−3 10−2 10−1 2−1 1 2 101 102 103 104

FS 0.936 0.931 0.890 0.646 0.188 0.072 0.188 0.647 0.898 0.938 0.937
HS 0.936 0.931 0.889 0.646 0.188 0.087 0.086 0.079 0.048 0.002 ∼10−5

VS ∼10−7 ∼10−4 0.040 0.120 0.106 0.086 0.188 0.647 0.898 0.938 0.937
AS ∼10−7 ∼10−4 0.021 0.091 0.046 0.042 0.031 0.058 0.046 0.002 ∼10−5

FX 0.936 0.932 0.891 0.646 0.188 0.077 0.023 0.050 0.022 0.020 0.020
FY 0.089 0.089 0.088 0.085 0.076 0.023 0.250 0.647 0.900 0.938 0.937
FA 0.004 0.004 0.003 0.001∼10−4 ∼10−5 ∼10−4 ∼10−3 ∼10−4 ∼10−4 ∼10−3

HY 0.089 0.089 0.088 0.088 0.087 0.038 0.216 0.276 0.049 ∼10−3 ∼10−5

VX ∼10−7 ∼10−4 0.037 0.117 0.065 0.027 0.026 0.050 0.023 0.020 0.020

Table 3.4: Numerically observed convergence factors for two-grid wave-
form relaxation with different combinations of smoothing and coarsening
strategies, applied to the anisotropic diffusion equation. (β = 0, h = 2−5,
∆t = 10−3, BDF1)
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ε 10−4 10−3 10−2 10−1 2−1 1 2 101 102 103 104

FS 0.936 0.931 0.890 0.648 0.210 0.108 0.209 0.649 0.898 0.937 0.937
HS 0.936 0.931 0.889 0.648 0.197 0.110 0.106 0.086 0.053 0.002 ∼10−5

VS ∼10−7 ∼10−4 0.036 0.108 0.113 0.110 0.196 0.649 0.898 0.937 0.937
AS ∼10−7 ∼10−4 0.020 0.085 0.053 0.052 0.040 0.057 0.050 0.002 ∼10−5

FX 0.935 0.930 0.895 0.868 0.863 0.852 0.821 0.659 0.237 0.036 0.004
FY 0.116 0.115 0.129 0.654 0.822 0.852 0.860 0.867 0.902 0.938 0.937
FA 0.011 0.011 0.009 0.004 0.035 0.034 0.030 0.011 0.003∼10−3 ∼10−4

HY 0.116 0.115 0.114 0.114 0.113 0.111 0.108 0.090 0.054 0.002 ∼10−5

VX ∼10−7 ∼10−4 0.036 0.108 0.115 0.112 0.101 0.168 0.123 0.018 ∼10−3

Table 3.5: Numerically observed convergence factors for multigrid wave-
form relaxation with different combinations of smoothing and coarsening
strategies, applied to the anisotropic diffusion equation. (β = 0, h = 2−5,
∆t = 10−3, BDF1, V-cycle)

ε 10−4 10−3 10−2 10−1 2−1 1 2 101 102 103 104

FS 0.936 0.931 0.890 0.646 0.188 0.072 0.188 0.647 0.898 0.937 0.937
HS 0.936 0.931 0.889 0.646 0.188 0.088 0.087 0.080 0.048 0.002 ∼10−5

VS ∼10−7 ∼10−4 0.040 0.120 0.106 0.088 0.188 0.647 0.898 0.938 0.937
AS ∼10−7 ∼10−4 0.021 0.091 0.046 0.042 0.030 0.058 0.045 0.002 ∼10−5

FX 0.936 0.931 0.890 0.704 0.571 0.480 0.369 0.050 0.010 ∼10−3 ∼10−4

FY 0.091 0.090 0.089 0.088 0.038 0.485 0.569 0.707 0.900 0.938 0.937
FA 0.005 0.004 0.004 0.001∼10−4 ∼10−5 ∼10−4 ∼10−3 ∼10−4 ∼10−6 ∼10−8

HY 0.091 0.090 0.089 0.089 0.089 0.089 0.088 0.081 0.048 0.002 ∼10−5

VX ∼10−7 ∼10−4 0.040 0.121 0.106 0.088 0.069 0.049 0.010 ∼10−3 ∼10−5

Table 3.6: Numerically observed convergence factors for multigrid wave-
form relaxation with different combinations of smoothing and coarsening
strategies, applied to the anisotropic diffusion equation. (β = 0, h = 2−5,
∆t = 10−3, BDF1, W-cycle)

FS HS VS AS FX FY FA HY VX
ε� 1 - - + + - ± + + +
ε� 1 - + - + ± - + + +

Table 3.7: Performance of multigrid waveform relaxation applied to the
anisotropic diffusion equation. (+: fast, −: slow, ±: slow for all but a small
range of values of ε)
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For strong coupling in the x-direction (ε � 1) horizontal zebra Gauss-
Seidel with standard coarsening (HS) shows good convergence. The conver-
gence is very bad, however for strong coupling in the y-direction (ε � 1).
The converse is true when we use vertical zebra Gauss-Seidel as smoother
(VS). Combining these two methods into alternating zebra Gauss-Seidel
(AS) results in good convergence for all values of ε. These results confirm
the findings for the stationary multigrid case.

The results of the Fourier-Laplace analysis in Table 3.3 indicate that we
could expect similar results for red-black Gauss-Seidel smoothing with x-
and y-semicoarsening (FX, FY). The numerical results in Table 3.5, how-
ever, show poor convergence for moderate values of ε. The two-grid Fourier-
Laplace analysis assumes that the correction equation on the coarse grid is
solved exactly or nearly so. In the V- and W-cycle case, this assumption
is not satisfied, because through grid stretching semicoarsening introduces
an anisotropy that is strongly increasing with growing number of grid lev-
els (see remark 5.1.3 on p. 134 of [TOS01]). We can therefore expect the
multigrid method to fail on the coarser grids, which renders the two-grid
approximation invalid. From the numerical results for V- and W-cycles it
becomes clear that the semicoarsening methods only work for very specific
values of ε. The alternating semicoarsening or MGS method with red-black
Gauss-Seidel as smoother (FA), however, shows very good convergence for
all values of ε. Combination of a smoother that works well for coupling in
one direction with semicoarsening for the other direction results in robust
solvers as well (rows HY and VX). These results confirm the results obtained
for the stationary multigrid case. Table 3.7 summarizes our findings.

3.5.3 Rotated Anisotropic Diffusion Equation

The previous results show that good convergence can be obtained for prob-
lems with strong coupling in the direction of the coordinate axes. Ta-
bles 3.8, 3.9 and 3.10 show convergence factors for different methods as
a function of the angle β, with fixed ε = 10−3. Because of symmetry it is
sufficient to consider β ∈ [0, π

2 ). We can conclude that all of the methods
considered here have problems when the coupling is not aligned with the
grid. Similar results are obtained for ε � 1. Again the result observed
for the V-cycle is worse than expected from the two-grid Fourier-Laplace
analysis. The W-cycle results are closer to the theoretical two-grid ones.
The results for different smoothers and standard coarsening with a V-cycle
are graphically illustrated in Figure 3.14. In this polar plot the convergence
factor ρ is plotted in function of the direction β of the anisotropy. A circular
curve with a small radius would indicate a robust method.

If the direction of coupling is unknown, it is best to use a method with
good convergence for all values of ε in the non-rotated anisotropic case. It
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Figure 3.14: Polar plot (ρ, β) of numerically observed convergence factors
for multigrid waveform relaxation with different smoothers and standard
coarsening, applied to the rotated anisotropic diffusion equation. (ε = 10−3,
h = 2−5, ∆t = 10−3, BDF1, V-cycle)

may be necessary, however, to consider other methods like incomplete LU
factorization smoothing when strong non-alignment can occur. Algebraic
multigrid methods can handle many types of anisotropy through their more
flexible coarsening strategies.

3.5.4 Diffusion Equation with Varying Coefficients

We illustrate the results with the more general equation

∂u

∂t
=

∂

∂x

(
a
∂u

∂x

)
+

∂

∂y

(
b
∂u

∂y

)
+ cu+ f (3.38)

on the unit square Ω = [0, 1]2 with varying coefficients a(x, y) = e10(x−y) and
b(x, y) = e−10(x−y). This problem has strong coupling in both directions.
The initial conditions, Dirichlet boundary conditions and source term f are
chosen such that the exact solution is u(t, x, y) = t + x + y. We use again
an equidistant rectangular grid

xi = i∆x, i = 0, . . . , nx, ∆x = n−1
x ,

yj = j∆y, j = 0, . . . , ny, ∆y = n−1
y .

Using central differences we can approximate (3.38) by

u̇i,j = c0,0
i,j ui,j + c−1,0

i,j ui−1,j + c1,0
i,j ui+1,j + c0,−1

i,j ui,j−1 + c0,1
i,j ui,j+1 + fi,j ,
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β 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

FS 0.990 0.788 0.682 0.664 0.683 0.788 0.990
HS 0.990 0.788 0.667 0.611 0.541 0.335 ∼10−4

VS ∼10−4 0.335 0.541 0.611 0.667 0.788 0.990
AS ∼10−4 0.312 0.486 0.532 0.486 0.312 ∼10−4

FX 0.990 0.788 0.634 0.528 0.366 0.144 0.093
FY 0.093 0.144 0.364 0.530 0.637 0.788 0.990
FA 0.004 0.009 0.045 0.061 0.040 0.007 0.004
HY 0.093 0.162 0.354 0.479 0.493 0.330 ∼10−4

VX ∼10−4 0.330 0.493 0.479 0.354 0.162 0.093

Table 3.8: Theoretical convergence factors for two-grid waveform relaxation
with different combinations of smoothing and coarsening strategies applied
to the rotated anisotropic diffusion equation. (ε = 10−3, h = 2−5, ∆t =
10−3, BDF1, infinite time interval)

where i = 1, . . . , nx − 1, j = 1, . . . , ny − 1, ui,j ≈ u(xi, yj) and

c±1,0
i,j = ∆x−2a(xi ±∆x/2, yj), c0,±1

i,j = ∆y−2b(xi, yj ±∆y/2),

c0,0
i,j = c(xi, yj)− c−1,0

i,j − c1,0
i,j − c

0,−1
i,j − c0,1

i,j .

We can write this in a compact way using the stencil notation

(Lu)i,j =

 c0,1

c−1,0 c0,0 c1,0

c0,−1


i,j

ui,j .

Packing the unknowns at the interior points of the grid into a vector of
dimension m = (nx − 1)(ny − 1) using, for example, the ordering

uk = ui,j , k = (i− 1)(ny − 1) + j,

the discrete system can be represented in the matrix form

u̇ = Lu+ f, (3.39)

with u(t), f(t) ∈ Rm and L ∈ Rm×m. (see Figure 2.1). The boundary
conditions are incorporated in f . The matrix L is sparse and has the fa-
miliar block tridiagonal structure with tridiagonal subblocks. For varying
coefficients, the matrix and its subblocks are no longer Toeplitz.

In Table 3.11 the convergence factors are given for multigrid waveform
relaxation methods with different combination of smoothing and coarsening
strategies. As expected only the robust methods (AS, FA, HY, VX) show
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β 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

FS 0.931 0.804 0.776 0.765 0.775 0.801 0.928
HS 0.931 0.804 0.769 0.745 0.656 0.428 ∼10−4

VS ∼10−4 0.448 0.625 0.725 0.761 0.800 0.929
AS ∼10−4 0.440 0.648 0.680 0.616 0.410 ∼10−4

FX 0.930 0.897 0.883 0.877 0.815 0.578 0.115
FY 0.115 0.625 0.816 0.874 0.889 0.892 0.928
FA 0.011 0.111 0.294 0.370 0.328 0.102 0.011
HY 0.115 0.472 0.658 0.685 0.625 0.415 ∼10−4

VX ∼10−4 0.441 0.604 0.667 0.633 0.492 0.115

Table 3.9: Numerically observed convergence factors for multigrid wave-
form relaxation with different combinations of smoothing and coarsening
strategies applied to the rotated anisotropic diffusion equation. (ε = 10−3,
h = 2−5, ∆t = 10−3, BDF1, V-cycle)

β 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

FS 0.931 0.766 0.697 0.688 0.696 0.767 0.929
HS 0.931 0.767 0.689 0.659 0.583 0.409 ∼10−4

VS ∼10−4 0.410 0.571 0.648 0.686 0.766 0.929
AS ∼10−4 0.422 0.582 0.606 0.555 0.398 ∼10−4

FX 0.931 0.853 0.799 0.732 0.585 0.232 0.090
FY 0.090 0.218 0.585 0.745 0.813 0.850 0.929
FA 0.004 0.020 0.119 0.162 0.100 0.017 0.004
HY 0.090 0.227 0.458 0.553 0.539 0.396 ∼10−4

VX ∼10−4 0.399 0.533 0.542 0.466 0.226 0.090

Table 3.10: Numerically observed convergence factors for multigrid wave-
form relaxation with different combinations of smoothing and coarsening
strategies applied to the rotated anisotropic diffusion equation (ε = 10−3,
h = 2−5, ∆t = 10−3, BDF1, W-cycle).
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FS HS VS FX FY
0.9207(>177) 0.9209(>178) 0.8926(>121) 0.8876(>121) 0.8867(>115)

AS HY VX FA
0.0175(3) 0.1009(8) 0.1166(8) 0.0073(4)

Table 3.11: Numerically observed convergence factors for multigrid wave-
form relaxation applied to (3.38). Number of iteration needed for reduction
of the norm of the defect by 10−8 between brackets. (h = 2−5, ∆t = 10−3,
BDF1)

good convergence. The same discretization as before is used (∆x = ∆y =
2−5, 5 levels, ∆t = 10−3, BDF1), together with V-cycles with one pre- and
one postsmoothing step. The number in brackets indicates the number of
iterations needed to get a reduction of the norm of the defect by a factor
10−8. At this point precision up to discretization error was reached for
all the converging methods. The convergence factor is estimated by the
quotient of the norms of the defect in the last and second to last iteration.
If more than 20 iterations were needed the convergence factor was estimated
using the norm of the defect in the 19th and 20th iteration. This value is
then used to estimate the expected number of iterations.

3.5.5 Correction for Computational Complexity

Obviously a multigrid iteration is more expensive than a single-grid itera-
tion. Similarly line relaxation and semicoarsening are more expensive than
point relaxation. To fairly compare the different methods we should intro-
duce a convergence factor relative to the amount of work needed for one
iteration. As a “work unit” one usually takes the amount of work needed
to do one single-grid point relaxation on the finest grid.

The tridiagonal systems that have to be solved for line relaxation involve
approximately twice the amount of work of point relaxation. The amount
of work is also proportional to the number of smoothing steps (ν1 +ν2). For
the different coarsening strategies we can estimate the amount of work by
counting the number of points visited. For V-cycles this results in the factors
given in table 3.12. We can now estimate, for example, that one multigrid
waveform iteration with point relaxation and alternating semicoarsening
with V(1,1)-cycles takes approximately 10 2

3 work units. For a method that
has a convergence factor ρ, and takes α work units per iteration, the con-
vergence factor per work unit is equal to ρ̃ = α

√
ρ. Figure 3.15 compares

the corrected convergence factor for the standard coarsening multigrid wave-
form relaxation methods, applied to the anisotropic model problem (β = 0).
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Point Relaxation ν1 + ν2 Standard Coarsening 4
3

Line Relaxation 2(ν1 + ν2) Semicoarsening 2

Alternating Semicoarsening 16
3

Table 3.12: Correction factors for different smoothing and coarsening strate-
gies (V-cycle)

The FS, VS and HS methods all have a parameter region where they work
best and another region where they perform (very) poorly. The computa-
tionally expensive AS method works well over the entire parameter region.
This behavior is typical also for the rotated problem and for other multigrid
operator combinations.

3.6 Conclusions

We have shown that it is possible to extend the multigrid methods devel-
oped for stationary anisotropic problems to multigrid waveform relaxation
methods for the corresponding time-dependent problems. The convergence
rates are qualitatively similar for the stationary and the time-dependent
methods. For problems where the anisotropy is aligned to the grid, alter-
nating line relaxation with standard coarsening and point relaxation with
alternating semicoarsening are appropriate methods. These methods are
still useful for problems where the anisotropy is not aligned with the grid,
but the performance is not optimal anymore.
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Figure 3.15: Numerically observed convergence factors “per work
unit” for multigrid waveform relaxation with different smoothers and
standard coarsening, applied to the anisotropic diffusion equation.
(β = 0, h = 2−5, ∆t = 10−3, BDF1, V-cycle)
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Chapter 4

High Order Time
Discretization Schemes

Advanced time discretization schemes for stiff systems of ordinary differen-
tial equations, such as implicit Runge-Kutta and boundary value methods,
have many appealing properties. However, the resulting systems of equa-
tions can be quite large and expensive to solve. Many techniques, exploiting
the structure of these systems, have been developed for general ordinary
differential equations (ODE). For spatial discretizations of time-dependent
partial differential equations these techniques are in general not sufficient
and also the structure arising from spatial discretization has to be taken
into consideration. We show here that for time-dependent parabolic prob-
lems, this can be done by multigrid methods, as in the stationary elliptic
case. The key to this approach is the use of a smoother that updates sev-
eral unknowns at a spatial grid point simultaneously. The overall cost is
essentially proportional to the cost of integrating a scalar ODE for each grid
point. Combinations of the multigrid principle with both time stepping and
waveform relaxation techniques are described, together with a convergence
analysis. Numerical results are presented for the isotropic heat equation
and a general diffusion equation with varying coefficients.

4.1 Introduction

Large, stiff systems of ODEs are often solved using low order methods such
as the implicit Euler scheme. This choice is usually dictated by implemen-
tation and computational complexity issues. Several more advanced time
discretization schemes such as implicit Runge-Kutta (IRK) methods [HW96]
and, more recently, boundary value methods (BVM), block boundary value

81
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methods (BBVM) [BT98, IM98, IM99] and general linear methods (GLM)
[But03] have been developed. These methods offer high orders of accuracy
together with favorable stability properties, error estimators and other in-
teresting features. Unfortunately, the linear algebra cost per time step is
in general very large for these methods. When a general IRK with three
stages or a BVM with three steps is applied, for example, the dimension of
the linear systems is three times that of the implicit Euler case. The cost
of solving these systems with standard methods is prohibitively large.

For general ODEs many specialized linear algebra methods have been
developed and implemented in ODE software. These methods exploit the
structure arising from carefully chosen time discretization formulae, that
are, e.g., only diagonally implicit (DIRK-methods) or singly implicit (SIRK-
methods) [Bur95, But03, HW96]. Since the systems arising from spatial
discretization of a time-dependent partial differential equation (PDE) can
be extremely large, it becomes important to use specialized methods that
also exploit the structure arising from discretization in space. We will show
here that for parabolic PDEs this can be done very efficiently by using
multigrid methods. The methods exploiting structure arising from the time
discretization formula can still be used as well, but with a good multigrid
solver, this may no longer be absolutely necessary.

We consider the same type of PDEs as in Chapters 2 and 3, i.e., parabolic
equations of the form

∂u

∂t
= Lu+ f, (4.1)

where L is an elliptic operator. To allow theoretical analysis and to keep
the notation concise, we assume that L is time independent. All algorithms
presented here are, however, applicable to the more general case where L
is time dependent. We also consider only discretization in time with a con-
stant time step and finite difference discretizations in space on equidistant,
rectangular grids with Dirichlet boundary conditions. The methods pre-
sented here can, however, be extended to three-dimensional problems and
finite element discretizations on regular or irregular grids with more gen-
eral boundary conditions. The geometric multigrid methods discussed in
Chapters 2 and 3 are used.

Some of the results in this chapter, especially with respect to multi-
grid for IRK methods, have already been reported by other authors; see
e.g., [Bur95, LO87]. Their results are considerably extended here and cast
into the more general framework of time stepping and block time stepping
with GLMs. The use of multigrid for BVM and BBVM discretizations is
new. This approach enables efficient solution of the BVM and BBVM linear
systems, even for very large-scale semidiscrete PDE problems.

In §4.2 we describe several high order time discretization schemes. The
resulting discrete systems are solved using iterative methods. Methods
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based on time stepping and waveform relaxation are presented in §4.3. Sec-
tion 4.4 shows how the convergence of the iterative methods for time step-
ping can be analyzed. The main theoretical results are presented in §4.5
where waveform relaxation methods for block time stepping using GLMs
and BBVMs are analyzed. Numerical results for two model problems, an
isotropic and an anisotropic diffusion equation, are presented in §4.7. A
number of different IRK and BVM schemes are considered. The corre-
sponding theoretical multigrid convergence rates are evaluated by means of
a two-grid Fourier mode analysis and verified by extensive numerical exper-
iments.

4.2 Time Discretization Schemes

We consider methods for stiff initial value problems of the form

ẏ(t) = f(t, y(t)), (4.2)

where t ∈ Ωt, y(t) ∈ V and y(0) = y0 ∈ V is given. The time domain can
be bounded (Ωt = [0, T ]) or unbounded (Ωt = [0,∞)). The space V can be,
for example, R in the case of a scalar ODE or Rm for a system of ODEs.
Time-dependent PDEs also fit this setting with V a space of functions on
some spatial domain Ω.

In this section a brief description is given of linear multistep formulae,
implicit Runge-Kutta methods, general linear methods and boundary value
methods. For detailed information, we refer to the books [BT98, Bur95,
But03, HNW93, HW96]. The stability domains of the methods are described
in §4.5.1. The parameters of the schemes used in the numerical experiments,
can be found in §4.2.6.

4.2.1 Linear Multistep Methods

Linear multistep methods (LMM) use solutions at several previous time
steps (Figure 4.1) in a formula of the form

0∑
j=−k

αk+jyi+j = ∆t
0∑

j=−k

βk+jf(ti+j , yi+j), (4.3)

where yi ≈ y(ti) ∈ V , ti = i∆t and αj , βj , j = 0, . . . , k are the param-
eters of the method. There is an equation for every i = k, . . . , n. Since
only y0 is given, the values y1, . . . , yk−1 have to be obtained by other meth-
ods. The index j ranges from −k to 0 to indicate the similarity with the
boundary value methods formulated below and to emphasize that the set of



84 CHAPTER 4. HIGH ORDER TIME DISCRETIZATION SCHEMES

∆ t

Figure 4.1: A linear multistep method uses values from several previous
time steps to advance one time step.

equations (4.3) for i = k, . . . , n can be described by a banded lower trian-
gular matrix. For stiff initial value problems, implicit LMMs (βk 6= 0) will
be used. A well-known class of implicit LMMs are the so-called backward
difference formulas (BDF) [HW96, Lam73]. Note, however, that it is im-
possible to construct A-stable LMMs of order higher than 2 (for a definition
of A-stability see §4.5.1). If y(t) ∈ Rm, then in each step a system of m
equations has to be solved. For the methods discussed below the systems
can be much larger. Unlike the LMMs, the methods below can exhibit very
good stability properties, even for high order discretizations.

4.2.2 Implicit Runge-Kutta Methods

Implicit Runge-Kutta (IRK) methods [Bur95, But03, HW96] use a number
of intermediate quantities to advance one time step (Figure 4.2). These
so-called stage values ỹi ∈ V s are calculated from

ỹi = 1syi−1 + ∆tAf(t̃i, ỹi), (4.4)

where t̃i = 1sti−1+c∆t, 1s = [1 · · · 1]T ∈ Rs and f indicates componentwise
application of f . The stage values ỹi are then used to calculate yi ∈ V using

yi = yi−1 + ∆tbT f(t̃i, ỹi). (4.5)

The parameters of the methods are contained in the matrix A ∈ Rs×s and
the vectors b, c ∈ Rs where s denotes the number of stage values. Some
well-known methods are the Gauss, Radau and Lobatto methods [Bur95,
But03, HW96].

If V = Rm all the unknowns for the stage values can be stacked into one
large vector ỹi ∈ Rsm and the system for the stage values and the update
step can be written more explicitly using the Kronecker product notation
for matrices (see §2.2). Let the first m elements of ỹi be the unknowns for
the first stage and so on. The system (4.4) becomes

ỹi = (1s ⊗ Im)yi−1 + ∆t(A⊗ Im)f(t̃i, ỹi), (4.6)

and the update step becomes

yi = (I1 ⊗ Im)yi−1 + ∆t(bT ⊗ Im)f(t̃i, ỹi). (4.7)
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t∆

Figure 4.2: An implicit Runge-Kutta method uses intermediate values to
advance one time step.

The function f : Rs × Rsm → Rsm returns the vectors f([ti]j , [yi]j) for
j = 1, . . . , s stacked into one large vector.

4.2.3 General Linear Methods

Both LMMs and IRK methods belong to the class of so-called general linear
methods (GLM) [But03, HW96]. There are several ways to formulate this
more general class of methods (see [But03]). We choose to use the equations

ỹi = Cyi−1 + ∆tAf(t̃i, ỹi), (4.8)

yi = Dyi−1 + ∆tBf(t̃i, ỹi), (4.9)

where A ∈ Rs×s, B ∈ Rr×s, C ∈ Rs×r and D ∈ Rr×r. Both ỹi ∈ V s

and yi ∈ V r are vectors. This formulation highlights the analogy with
IRK methods. The stage values ỹi are typically approximations of y(t) for
some t in the current time step. The vectors yi can contain, for example,
approximations of y(t), brought forward from previous time steps or scaled
approximations of derivatives of y(t). In order to have a stable method, D
has to be power bounded. Further conditions are needed to ensure that the
method is consistent. The matrices C and D are typically chosen such that
D is of rank one and also D1r = 1r and C1r = 1s.

For V = Rm the equations defining a GLM can again be given more
explicitly using the Kronecker product notation. In the same way as for the
IRK methods the updated values are stacked into a vector yi ∈ Rrm and
the stage values are stacked into a vector ỹi ∈ Rsm. The equations (4.8)
and (4.9) become

ỹi = (C ⊗ Im)yi−1 + ∆t(A⊗ Im)f(t̃i, ỹi), (4.10)

yi = (D ⊗ Im)yi−1 + ∆t(B ⊗ Im)f(t̃i, ỹi). (4.11)

The function f : Rs × Rsm → Rsm is defined in the same way as for the
IRK methods.

Within the family of GLMs many special methods have been developed
that try to combine the efficiency of LMMs and the good stability proper-
ties of IRK methods. The computational complexity of IRK methods and
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∆ t

Figure 4.3: A general linear method method uses intermediate values to
update several values.

GLMs depends mainly on the structure of A. In a Newton iteration for
(4.8), the Jacobian is usually taken constant for all stages. An eigenvalue
decomposition of A then reduces the system of order sm to s systems of
order m. For general matrices A this will, however, involve using complex
arithmetic. This can be avoided when A is lower triangular or diagonal.
In some cases the cost can be further reduced if in addition the diagonal
elements of A all have the same value. If A is diagonal, all stages can be
solved in parallel. Increased efficiency can also be attained if A has only
a single eigenvalue. For information and references about IRK and GLMs
with special structures, see [Bur95, But03, HW96]. In the rest of the chap-
ter, we will derive results for GLMs. The results for the subclass of IRK
methods can be retrieved by taking r = 1, B = bT , C = 1s, and D = 1.

4.2.4 Boundary Value Methods

Another, more recent class of methods is the class of boundary value meth-
ods (BVM) [BT98, IM98, IM99] which can be interpreted as a generalization
of the LMMs. The discretization is obtained by first assuming that the ODE
is a boundary value problem and then imposing extra initial and final con-
ditions on the values at the boundaries that are in fact unknown. A k-step
BVM has for each i = k1, . . . , n− k2 an equation of the form

k2∑
j=−k1

αk1+jyi+j = ∆t
k2∑

j=−k1

βk1+jf(ti+j , yi+j). (4.12)
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The main difference with the LMMs is that j ranges from −k1 to k2 (k =
k1 + k2). The extra k1 − 1 initial and k2 final equations are of the form

k∑
j=0

α
(i)
j uj = ∆t

k∑
j=0

β
(i)
j f(tj , uj), i=1,...,k1−1, (4.13)

k∑
j=0

α
(i)
j un−k+j = ∆t

k∑
j=0

β
(i)
j f(tn−k+j , un−k+j), i=n−k2+1,...,n, (4.14)

where the coefficients α(i)
j and β(i)

j are chosen such that the truncation errors
for the initial and final conditions are of the same order as for the basic
method (4.12). The matrices describing the systems involved are banded,
as for LMMs, but no longer lower triangular. The n equations (4.12)-(4.14)
can be written as

Aeye = ∆tBefe(te, ye),

with te ∈ Rn+1, ye ∈ V n+1 and Ae, Be ∈ Rn×(n+1). The function fe :
Rn+1 × V n+1 → V n+1 applies f componentwise. The e subscript indicates
that the known initial value is included. The matrix Ae has the following
structure

Ae =



α1
0 α1

1 · · · α1
k

...
... · · ·

...
αk1−1

0 αk1−1
1 · · · αk1−1

k

α0 · · · αk

. . . · · ·
. . .

α0 · · · αk

αn−k2+1
0 · · · αn−k2+1

k
... · · ·

...
αn

0 · · · αn
k


. (4.15)

Replacing α by β yields the structure for Be. Using the partitions Ae =
[a0|A] and Be = [b0|B], where we split off the first columns, we can rewrite
this as a system for the unknowns y ∈ V n. We get

Ay = ∆tBf(t, y) + g0, (4.16)

where g0 = −a0y0 + ∆tb0f(t0, y0) contains the initial condition and the
function f : Rn × V n → V n applies f componentwise.

For V = Rm the unknown values can be stacked into a large vector
y ∈ Rnm in the same way as the stage values for IRK methods. Using the
Kronecker product notation we can write the system (4.16) as

(A⊗ Im)y + (a0 ⊗ y0) = ∆t(B ⊗ Im)f(t, y) + ∆t(b0 ⊗ f(t0, y0)). (4.17)
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4.2.5 Block Boundary Value Methods

We conclude this part on time discretization schemes with a method that
can form an extra step in the process of transforming the continuous prob-
lem (4.2) to a discrete problem. Dividing the time interval into n subinter-
vals leads to the sequence of subproblems

ẏi(t) = f(t, yi(t)), yi : [ti−1, ti]→ V, i=1,...,n,

y1(t0) = y0, yi(ti−1) = yi−1(ti−1), i=2,...,n,

where the final value of one subinterval is used as the initial condition on
the next. This procedure is called time windowing or block time stepping.

Applying time windowing and a k-step BVM using s time steps on each
of the subintervals yields a block boundary value method (BBVM) [BT98,
IM98, IM99]:

Ayi +A0yi−1 = ∆tBf(ti, yi) + ∆tB0f(ti−1, yi−1), (4.18)

where ti ∈ Rs, yi ∈ V s, A0 = a0e
T
s , B0 = b0e

T
s ∈ Rs×s and es =

[0 · · · 0 1]T ∈ Rs. This approach allows matrices A and B ∈ Rs×s of much
lower dimension. When s ≈ k these matrices can no longer be considered
banded and the Toeplitz character is lost.
Remark 4.2.1. It is important to note that ∆t has a different interpretation
in GLMs and BBVMs. For BBVMs it is the distance between stage values;
for GLMs it is the length of one time step, which contains s stage values.
In the following remarks we consider BVMs on non-equidistant grids. Each
equation can have its own time step. To keep the notation concise, we
assume that the time steps are incorporated into the coefficient matrices for
IRK methods, GLMs and BVMs.
Remark 4.2.2. It is straightforward to formulate IRK methods as BBVMs.
Let yi and ỹi be the values and stage values calculated by an IRK method
defined by the matrix A, and the vector b. Using

ŷ =
[
ỹi

yi

]
, and ŷ0 = yi−1,

where we use a hat (̂·) to designate vectors and matrices related to the
BVM, we get a BVM for ŷ defined by the matrices

Â =
[
Is 0
0 1

]
, â0 =

[
−1s

−1

]
, B̂ =

[
A 0
bT 0

]
, b̂0 =

[
0
0

]
.

For IRK methods, such as the Radau IIA methods, where the last stage
value of ỹi is the same as the new approximation yi, we can use ŷ = ỹi and
the last element of â0 and b̂0, and the last row and column of Â and B̂ can
be dropped.
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Remark 4.2.3. It is also possible to formulate BBVMs as IRK methods. Let
ŷ be the values calculated by a BBVM defined by the matrices Â and B̂,
the vectors â0 and b̂0 and the initial value ŷ0. If we assume that Â−1 exists
then it follows from the fact that the BBVM integrates the equation y′ = 0
exactly that Â−1â0 = −1s. Using

ỹi =
[
ŷ0
ŷ

]
, and yi =

[
0 es

]
ỹi,

we get

A =
[

0 0
Â−1b̂0 Â−1B̂

]
, bT =

[
0 es

]
A.

Remark 4.2.4. Arbitrary GLMs can be formulated as so-called BBVMs with
memory. The main difference with the IRK case is that the matrices Â0

and B̂0 are general. If yi and ỹi are the values and stage values calculated
by a GLM defined by the coefficient matrices A, B, C and D, then using

ŷi =
[
ỹi

yi

]
,

we get a BBVM for ŷi defined by the matrices

Â =
[
I 0
0 I

]
, Â0 =

[
0 −C
0 −D

]
, B̂ =

[
A 0
B 0

]
, B̂0 =

[
0 0
0 0

]
.

Remark 4.2.5. It is also possible to formulate BBVMs as GLMs. Using, for
example,

ỹi = yi =
[

ŷi

ŷi−1

]
,

and assuming that Â−1 exists, we get

A = B =
[
Â−1B̂ Â−1B̂0

0 0

]
, C = D =

[
−Â−1Â0 0

I 0

]
.

For more information on BBVMs and GLMs we refer to [BT98, But03,
IM98, IM99].

4.2.6 Schemes used for the Numerical Experiments

We present here the coefficients of the methods used in the numerical ex-
periments.

Implicit Runge-Kutta methods

We considered only the Radau IIA method with 3 stages.
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RAD3

c =

 4−
√

6
10

4+
√

6
10
1

 , A =

 88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

16−
√

6
36

16+
√

6
36

1
9

 ,
bT =

[
16−

√
6

36
16+

√
6

36
1
9

]

Boundary Value Methods

The coefficient matrices Ae and Be for the LMMs and BBVMs we used
are given below. The boldface rows correspond to the coefficients αj and
βj of the basic method (4.12). The rows above correspond to the initial
conditions (4.13) and the rows below to the final conditions (4.14). The
coefficient matrices for s > k are obtained by repeating the boldface rows
as in (4.15).

BDF1

Ae =
[
−1 1

]
, Be =

[
0 1

]

GAM4

Ae =


−1 1

−1 1
−1 1

−1 1

 ,

Be =
1

720


251 646 −264 106 −19
−19 346 456 −74 11

11 −74 456 346 −19
−19 106 −264 646 251
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GBDF5

Ae =
1
60


−12 −65 120 −60 20 −3

3 −30 −20 60 −15 2
−2 15 −60 20 30 −3

3 −20 60 −120 65 12
−12 75 −200 300 −300 137

 ,

Be =


0 1
0 1
0 1
0 1
0 1



BDF5

The last rows of the previous matrices contain the coefficients of the BDF5
method.

RAD3

The Radau IIA methods can be easily formulated as a BBVM. It is impor-
tant to note that the points within a time step are not equidistant as in the
previous BVMs and that the time step ∆t has a different interpretation.
See also §5.5.3.

Ae =

 −1 1
−1 1
−1 1

 , Be =

 0 88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

0 296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

0 16−
√

6
36

16+
√

6
36

1
9



4.3 Time Integration

In Chapter 2 we briefly explained how iterative methods and more specifi-
cally multigrid methods, can be used to solve systems of equations resulting
from discretization of time-dependent PDEs. By changing the order in
which the discretization and solution methods are applied, a whole variety
of multigrid based solution methods for time-dependent problems can be de-
rived. We now formulate the two families of methods we will focus on in the
remainder of this chapter: time stepping and waveform relaxation. Block
time stepping is mentioned as a method in between these two extremes.
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x

t

Figure 4.4: In a time stepping procedure all the values for one time step are
updated simultaneously.

4.3.1 Time Stepping

If we apply any of the time discretization schemes discussed in §4.2 to a
time-dependent partial differential equation, we get a so-called time step-
ping method (Figure 4.4). In the case of a parabolic initial value problem,
the elliptic subproblems can be solved using a multigrid algorithm. One
smoothing step consists of a loop over all spatial grid points, updating all
unknowns for the considered time step simultaneously. For LMMs there is
only one unknown per grid point and only scalar computations are required.
An s-dimensional system has to be solved at each grid point in the IRK,
GLM and BBVM cases. Since s is usually small, this can be done using
a standard dense linear system solver. It is still possible to use eigenvalue
decompositions or methods with a special structure, as described in §4.2,
but this will generally not be necessary. The BVM case cannot be con-
sidered a time stepping method since the values at all time steps have to
be obtained from a system of equations that is banded but not triangular
or block triangular. This means that the solution components cannot be
obtained in sequence; they must be computed simultaneously.

Applying to (4.1) first a time discretization from §4.2, then spatial dis-
cretization as in §2.3.1 or §3.2 and finally a splitting of the discretized elliptic
operator as in §2.3.2 or §3.3, we get the following iterations. Note that all
of these methods can be used as the smoother in a multigrid scheme.

For a LMM (4.3), the classical iteration (2.4), defined by the splitting
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L = L+ + L−, results in
0∑

j=−k

αk+ju
(ν)
i+j =∆t

0∑
j=−k

βk+jL
+u

(ν)
i+j+

∆t
0∑

j=−k

βk+jL
−u

(ν−1)
i+j + ∆t

0∑
j=−k

βk+jfi+j .

(4.19)

Note that additional methods have to be provided to approximate the initial
values ui ∈ Rm, i = 1, . . . , k − 1 to turn this into a practical method.

When we apply a BVM (4.12), we get the following iteration

k2∑
j=−k1

αk1+ju
(ν)
i+j =∆t

k2∑
j=−k1

βk1+jL
+u

(ν)
i+j+

∆t
k2∑

j=−k1

βk1+jL
−u

(ν−1)
i+j + ∆t

k2∑
j=−k1

βk1+jfi+j .

(4.20)

The initial and final conditions can be derived in the same way from (4.13)
and (4.14). Using the matrices A and B the combined equations can be
written in Kronecker product notation as

(A⊗Im)u(ν) + (a0 ⊗ Im)u(ν)
0 =

∆t(B ⊗ L+)u(ν) + ∆t(B ⊗ L−)u(ν−1) + ∆t(B ⊗ Im)f+

∆t(b0 ⊗ (L+u
(ν)
0 )) + ∆t(b0 ⊗ (L−u(ν−1)

0 )) + ∆t(b0 ⊗ f0),

with A, B ∈ Rn×n, a0, b0 ∈ Rn×1, u(ν), f ∈ Rnm and u(ν)
0 , f0 ∈ Rm.

For a GLM described by (4.8) and (4.9), the iteration becomes

ũ
(ν)
i = (C ⊗ Im)u(ν)

i−1+∆t(A⊗ L+)ũ(ν)
i

+∆t(A⊗ L−)ũ(ν−1)
i + ∆t(A⊗ Im)f̃i,

(4.21)

u
(ν)
i = (D ⊗ Im)u(ν)

i−1+∆t(B ⊗ L+)ũ(ν)
i

+∆t(B ⊗ L−)ũ(ν−1)
i + ∆t(B ⊗ Im)f̃i.

(4.22)

Discretizing time using a BBVM (4.18) results in the iterative method

(A⊗Im)u(ν)
i + (A0 ⊗ Im)u(ν)

i−1 =

∆t(B ⊗ L+)u(ν)
i + ∆t(B ⊗ L−)u(ν−1)

i + ∆t(B ⊗ Im)fi+

∆t(B0 ⊗ L+)u(ν)
i−1 + ∆t(B0 ⊗ L−)u(ν−1)

i−1 + ∆t(B0 ⊗ Im)fi−1.

(4.23)

The BVM discretization corresponds to taking the number of subintervals
n = 1.
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x

t

Figure 4.5: In a waveform relaxation procedure all the values for one spatial
grid point are updated simultaneously.

4.3.2 Waveform Relaxation

One way of deriving waveform relaxation is to first transform (4.1) into the
system of ODEs

u̇ = Lu+ f (4.24)

by discretizing only the spatial domain. This fits the framework outlined
in §2.6 with u, f : Ωt → Rm and the operator A = d

dt − L. The splitting
A+ = d

dt − L
+, A− = −L− gives us the iteration

u̇(ν) = L+u(ν) + L−u(ν−1) + f, (4.25)

which can be used as a smoother in a multigrid algorithm. This algorithm
can be defined on a time interval that is finite, Ωt = [0, T ] or infinite,
Ωt = [0,∞). In this continuous waveform relaxation method, one step
consists of the solution of m scalar ODEs, one for each grid point. Applying
any of the time discretization schemes to solve these leads to a discrete
waveform relaxation method (Figure 4.5). Waveform relaxation can also be
considered an extreme form of block time stepping as discussed in the next
section.

As mentioned in the previous section, an iterative solution procedure
of waveform relaxation type is a natural choice for BVMs since all of the
variables in one spatial grid point are coupled in a linear system that is not
triangular. Similar waveform relaxation methods are possible for any other
LMMs as well as for GLMs and BBVMs. For LMMs the subsystems are
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t

x

Figure 4.6: Block time stepping can be seen as intermediate between time
stepping and waveform relaxation.

lower triangular and characterized by matrices A and B of the form

A =



αk

...
. . .

α0 . . . αk

. . . . . . . . .
α0 . . . αk

 .

For BVMs they are banded of the form (4.15) and in the case of GLMs or
BBVMs they are block lower triangular. For all these cases, the systems
that arise when using a discrete waveform relaxation method can be easily
solved by direct methods.

4.3.3 Block Time Stepping

An interesting modification of the time stepping schemes is to collect the
equations associated with a consecutive set of time steps together into one
big system of equations [HV95, SN88, Wom90]. Combining four BDF1 time
steps, for example, results in a system of equations of the form

(A⊗ Im)u = ∆t(B ⊗ L)u+ ∆t(B ⊗ Im)f + g0,

where u, f, g0 ∈ R4m, with m the number of equations in the original ODE,
B = I4 and

A =


1
−1 1

−1 1
−1 1

 .
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Information about the previous time step is incorporated in g0 as in (4.16).
The splitting L = L+ + L− leads to an iteration of the form

(A⊗ Im)u(ν) = ∆t(B ⊗ L+)u(ν) + ∆t(B ⊗ L−)u(ν−1) + ∆t(B ⊗ Im)f + g0.

This can be seen as a collective update for all the unknowns on the set of time
levels considered and can be executed by solving a series of small systems
of equations, one 4×4 system at each grid point in this particular example.
We call this type of method a block time stepping scheme (Figure 4.6).
Taking this approach one step further and updating all time steps at a grid
point simultaneously, results in a discrete waveform relaxation method as
discussed in the previous section.

4.3.4 Remarks

The time stepping, block time stepping and waveform relaxation schemes
for a linear problem on a given grid and discretization solve exactly the same
equations. The corresponding multigrid methods differ only in the order in
which the unknowns are updated. In the time stepping case the ODE solver
forms the outer loop and a multigrid solver is used within each time step.
In the waveform relaxation case, the multigrid solver forms the outer loop
and the ODE solver is used within its smoother. In the block time stepping
case the multigrid solver forms the outer loop. In each grid point there is
a loop of over subintervals of the time domain and in each subinterval the
ODE solver is used. Summarizing, we can say that a time stepping method
loops over time steps, then multigrid iterations, then multigrid levels, then
smoothing steps, and finally grid points. A waveform relaxation or block
time stepping method loops over multigrid iterations, then multigrid levels,
then smoothing steps, then grid points, and finally time steps. In all cases
the cost of one multigrid iteration is equivalent to the cost of solving a scalar
ODE at each grid point.

The approach discussed here has to be contrasted with other approaches
for the solution of systems arising from the discretization of general ODEs.
One approach to solving systems with matrices of the form A⊗Im−∆tB⊗L,
obtained by using BVMs, is to use circulant approximations for the ma-
trices A and B to precondition a Krylov subspace iteration (see for exam-
ple [Ber00, BN03, CNJ01, IT01]). This essentially comes down to a splitting
of the matrices A and B, whereas we split the matrix L. The approaches are,
of course, not mutually exclusive, but for the small subsystems that have
to be solved at each grid point in our multigrid smoothers, direct methods
are hard to beat. Preconditioning based on diagonal splittings of A and B
is studied in [MN05]. Finally, we note that smoothers derived by directly
applying the Jacobi or Gauss-Seidel methods to the system matrix give very
unsatisfactory results.
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4.4 Convergence Analysis for the Time Step-
ping Case

In this section we present a convergence analysis of the iterative methods
for time stepping schemes discussed in the previous sections. We use the
asymptotic convergence factor, i.e., the spectral radius of the iteration op-
erator, as a measure for convergence. In the time stepping case the iterates
are vectors and the iteration operator is a matrix. The convergence factors
can therefore be derived using only linear algebra manipulations. This is an
extension of the analysis for the implicit Euler method in §2.5.5. A different
derivation of these results is also presented Chapter 7.

4.4.1 Single Grid Methods

For the LMM case, we obtain from (4.19) the error iteration

αke
(ν)
i = ∆tβkL

+e
(ν)
i + ∆tβkL

−e
(ν−1)
i , (4.26)

where the iteration errors are e
(ν)
i = u

(ν)
i − ui ∈ Rm. Let K∆t be the

corresponding iteration operator. The convergence factor is then given by

ρ (K∆t) = ρ
(
(αkIm −∆tβkL

+)−1∆tβkL
−
)

= ρ

((
1

∆t
αk

βk
Im − L+

)−1

L−

)
,

where we assumed that βk 6= 0 and 1
∆t

αk

βk
/∈ σ(L+). Introducing the operator

K(z) = (zIm − L+)−1L− (4.27)

(see (2.15)) we can write this as

ρ (K∆t) = ρ

(
K

(
1

∆t
αk

βk

))
.

We can now state the following theorem.

Theorem 4.4.1. Let K∆t be the iteration operator of the iteration (4.19)
used in the LMM time stepping method and let Σ = {αk

βk
}. If 1

∆tΣ∩σ(L+) =
φ, then

ρ(K∆t) = ρ
(
K(z)

)
, with z =

1
∆t

αk

βk
. (4.28)
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Note that for the Gauss-Seidel and Jacobi methods, the operator K(z)
is the iteration matrix for the equivalent splitting method applied to

zu = Lu+ f, (4.29)

which is the Laplace transform of the system of ODEs (4.24).
For block BVMs (with standard BVMs and LMMs as special cases), we

can derive from (4.23) the error iteration

(A⊗ Im)e(ν)
i = ∆t(B ⊗ L+)e(ν)

i + ∆t(B ⊗ L−)e(ν−1)
i , (4.30)

where e
(ν)
i = u

(ν)
i − ui ∈ Rsm. Let K∆t be the corresponding iteration

operator. Assuming that B−1 exists and that 1
∆tσ(B−1A)∩ σ(L+) = φ, we

get

ρ (K∆t) = ρ
(
(A⊗ Im −∆tB ⊗ L+)−1∆t(B ⊗ L−)

)
= ρ

((
1

∆t
B−1A⊗ Im − Is ⊗ L+

)−1

(Is ⊗ L−)

)
,

which we can write as

ρ (K∆t) = ρ

(
K

(
1

∆t
B−1A

))
,

where formally define the matrix K(T ) as

K(T ) = (T ⊗ Im − Is ⊗ L+)−1(Is ⊗ L−).

From the calculation rules for Kronecker products it follows that if µ is
an eigenvalue of K(z) with eigenvector y and z is an eigenvalue of T with
eigenvector x, then µ is an eigenvalue of K(T ) with eigenvector x ⊗ y.
Equivalently, using an eigenvalue decomposition T = XΛX−1 the matrix
can be written as

K(T ) = (X ⊗ Im)(Λ⊗ Im − Is ⊗ L+)−1(Is ⊗ L−)(X−1 ⊗ Im).

Both reasonings show that

σ(K(T )) =
⋃

z∈σ(T )

σ(K(z)).

This leads us to the following theorem.

Theorem 4.4.2. Let K∆t be the iteration operator of the iteration (4.23)
used in the BBVM time stepping method and let Σ = σ(B−1A). If 1

∆tΣ ∩
σ(L+) = φ, then

ρ(K∆t) = max
z∈ 1

∆t Σ
ρ(K(z)). (4.31)
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By choosing Σ an appropriate subset of C, equation (4.31) will apply to
all other time discretization methods considered here (max is replaced by
sup when Σ is an infinite set).

In the IRK/GLM time stepping case, the iterative method is used to
find the solutions of the equations (4.4) for the stage values. The values ui

are calculated directly from ũi following the equations (4.4) and do not take
part in the iteration. The iteration for the errors ẽ(ν)

i = ũ
(ν)
i − ũi ∈ Rsm

becomes
ẽ
(ν)
i = ∆t(A⊗ L+)ẽ(ν)

i + ∆t(A⊗ L−)ẽ(ν−1)
i . (4.32)

The convergence factor of the corresponding iteration operator K∆t can be
written as

ρ (K∆t) = ρ
(
(Is ⊗ Im −∆tA⊗ L+)−1(∆tA⊗ L−)

)
= ρ

(
K

(
1

∆t
A−1

))
,

where we assume that A−1 exists and 1
∆tσ(A−1) ∩σ(L+) = φ. By the same

reasoning as for the BVM case we find the following theorem.

Theorem 4.4.3. Let K∆t be the iteration operator of the iteration (4.21),
used for the stage values of the GLM time stepping method and let Σ =
σ(A−1). If 1

∆tΣ ∩ σ(L+) = φ, then

ρ(K∆t) = max
z∈ 1

∆t Σ
ρ(K(z)). (4.33)

4.4.2 Multigrid Methods

All of the methods considered in the previous section can be used as a
smoother inside a multigrid iteration. The convergence of the resulting
methods can be analyzed by means of a two-grid local Fourier mode analysis.
See §3.4 for a more detailed discussion. As an example, we show how the
analysis for classical iterative methods can be extended to a two-grid time
stepping method using a BBVM time discretization. The results for the
other time stepping schemes are analogous.

First we recall the two-grid iteration operator (3.13) for solving (4.29)

M(z) = K(z)ν2(I − P (zIm̄ − L̄)−1R(zIm − L))K(z)ν1 . (4.34)

This matrix is derived by applying the framework of §2.6 using A = zIm−L,
A+ = zIm −L+, A− = −L−, R = R, P = P , Ā = zIm̄ − L̄ and with K(z)
defined as before.

Doing the same for A = A⊗ Im−∆tB⊗L, A+ = A⊗ Im−∆tB⊗L+,
A− = −∆tB ⊗ L−, R = Is ⊗ R, P = Is ⊗ P and Ā = A⊗ Im̄ −∆tB ⊗ L̄,
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we derive that the iteration operator for the two-grid method using (4.23)
as smoother can be written as

M∆t = M

(
1

∆t
B−1A

)
.

The results from the previous section continue to hold for the two-grid
iteration if we replace K(z) by M(z) and extend the condition on the set Σ
to

1
∆t

Σ ∩ (σ(L+) ∪ σ(L̄)) = φ.

The part involving σ(L+) guarantees that the smoothing symbol is well
defined, the part involving σ(L̄) guarantees that the coarse grid correction
symbol is well defined (see (4.34)).

4.5 Convergence Analysis for the Discrete
Waveform Relaxation Case

The theorems 2.5.6 and 2.5.7 show how the convergence of discrete waveform
relaxation methods using LMMs can be analyzed [MN87b, JV96b]. An
analysis of the IRK case was given in [LO87]. In this section we present an
analysis for GLMs and BBVMs. As usual, we consider methods defined on
infinite time intervals since this provides results that correspond better to
numerically observed behavior. For further motivation of this approach we
refer to [JV96a, MN87a, Van93]. Weighted norms or pseudospectra can also
be used to obtain meaningful information about convergence. In [LW97] the
convergence analysis on infinite time intervals is shown to be a limiting case
of the pseudospectral analysis.

4.5.1 Stability Domains

Stability domains of time discretization schemes play an important part in
the convergence analysis of discrete waveform relaxation methods. We recall
the definitions of the stability domains of the methods considered here. For
each method we also introduce a set Σ ⊂ C that we will later encounter
in the convergence analysis. For the case of LMMs a close relation exists
between Σ and the stability domain. We show that the same relation holds
for GLMs (and therefore also for IRK methods), BVMs and BBVMs. As a
bonus, this relation provides us with a convenient way to calculate points
on a curve containing the boundary of the stability domain.

The linear stability of a time discretization scheme is studied using the
Dahlquist test equation [HW96]

y′ = λy, y(0) = y0. (4.35)
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The stability domain consists of all z = ∆tλ ∈ C for which the discrete so-
lution is bounded. The interior of the stability domain, also called the open
stability domain, consists of all z for which the discrete solution converges
to 0. Only the definitions for open stability domains are given since they
are simpler and sufficient for the rest of the discussion.

For a LMM (4.3) we define the polynomials

a(w) =
k∑

j=0

αjw
j and b(w) =

k∑
j=0

βjw
j . (4.36)

The common assumptions of irreducibility, consistency and zero stability
are made [But03, HNW93]. Furthermore, we consider only implicit methods
(βk 6= 0). We can use the same definitions for BVMs [BT98]. Again, the
methods are assumed to be irreducible, consistent and zero stable. BVMs
are implicit by nature.

Definition 4.5.1. A polynomial is of type (k1, k2, k3) if it has k1 zeros
inside the open unit disc, k2 zeros on the unit circle and k3 zeros outside
the closed unit disc.

By applying each of the schemes in section 4.2 to the test equation (4.35),
we obtain the following definitions.

Definition 4.5.2. The open stability domain S of a k-step LMM consists
of all z ∈ C for which the polynomial a(w)− zb(w) is of type (k, 0, 0).

The following generalization of the stability concept to BVMs can be
found in [AM95, BT98].

Definition 4.5.3. The open (k1, k2)-stability domain S of a BVM consists
of all z ∈ C for which the polynomial a(w)− zb(w) is of type (k1, 0, k2).

Definition 4.5.4. The open stability domain S of an IRK method consists
of all z ∈ C for which |1 + bT (z−1Is −A)−11s| < 1 [But03, HW96].

Definition 4.5.5. The open stability domain S of a GLM consists of all z ∈
C for which the characteristic polynomial of the matrixD+B(z−1Is−A)−1C
is of type (s, 0, 0) [But03, HW96].

Definition 4.5.6. The open stability domain S of a BBVM consists of
all z ∈ C for which the characteristic polynomial of the matrix −(A −
zB)−1(A0 − zB0) is of type (s, 0, 0) [BT98, IM99].

A LMM, GLM or BBVM is called A-stable if the left half-plane is con-
tained in its stability domain. A BVM is called Ak1,k2-stable if the left
half-plane is contained in its (k1, k2)-stability domain. These are desirable,
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if not essential, properties when solving stiff systems of ODEs. An A-stable
LMM cannot have order higher than 2. Many families of IRK methods exist
that are A-stable for any order. Generalized Adams methods (GAM) and
generalized backward difference formulas (GBDF) are Ak1,k2-stable BVMs.
When used as BBVMs, GAMs are A-stable up to order 8 and GBDFs up
to order 4. By adding a few points near the edges of the equidistant grid in
a time step, A-stable methods of any order can be constructed.

In the convergence analysis of LMMs further on we make use of the set

Σ =
{
z ∈ C : z =

a

b
(w), |w| ≥ 1

}
. (4.37)

In the BVM case we have

Σ = {z ∈ C : a(w)− zb(w) is not of type (k1, 0, k2)}. (4.38)

It is clear that in each case Σ is the complement in C of the open stability
domain S, i.e.,

Σ = C \ S. (4.39)

We now introduce the sets Σ that we encounter in the convergence anal-
ysis of GLMs and BBVMs and show that (4.39) still holds.

Lemma 4.5.7. Let S be the open stability domain of a GLM as defined by
Definition 4.5.5 and let the set Σ be defined as

Σ = {z ∈ C : z−1 ∈ σ(A+ C(wIr −D)−1B), |w| ≥ 1}; (4.40)

then relation (4.39) is satisfied.

We first prove the following lemma.

Lemma 4.5.8. For all matrices A ∈ Cs×s, B ∈ Cr×s, C ∈ Cs×r, D ∈ Cr×r

and scalars p, q ∈ C the following statements are equivalent.

1. q ∈ σ(A+ C(pIr −D)−1B),

2. p ∈ σ(D +B(qIs −A)−1C),

assuming that the inverses exist (p /∈ σ(D), q /∈ σ(A)).

Proof. Because of symmetry, it is enough to prove that the first statement
implies the second. Using the definition of an eigenvalue, the first statement
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results in the following sequence of implications:

∃x 6= 0 : C(pIr −D)−1Bx+Ax = qx ∧ Bx 6= 0,

∃x 6= 0 : C(pIr −D)−1Bx = (qIs −A)x ∧ Bx 6= 0,

∃x 6= 0 : (qIs −A)−1C(pIr −D)−1Bx = x ∧ Bx 6= 0,

∃x 6= 0 : B(qIs −A)−1C(pIr −D)−1Bx = Bx ∧ Bx 6= 0,

∃y 6= 0 : B(qIs −A)−1Cy = (pIr −D)y ∧ Cy 6= 0,

∃y 6= 0 : B(qIs −A)−1Cy +Dy = py ∧ Cy 6= 0.

By the definition of an eigenvalue, this yields the second statement.

Proof of Lemma 4.5.7. Using Lemma 4.5.8 we see that z ∈ Σ if and only if
there exists a w such that

w ∈ σ(D +B(z−1Is −A)−1C) and |w| ≥ 1

or, equivalently, z /∈ S.

Remark 4.5.9. Lemma 4.5.8 can also be proved by applying the identity

det
([

M11 M12

M21 M22

])
= det(M11) det(M22 −M21M

−1
11 M12)

= det(M11 −M12M
−1
22 M21) det(M22)

to the matrix [
qIs −A −C
−B pIr −D

]
.

Lemma 4.5.10. Let S be the open stability domain of a BBVM as defined
by Definition 4.5.6 and let the set Σ be defined as

Σ = {z ∈ C : z ∈ σ
(
(B + w−1B0)−1(A+ w−1A0)

)
; |w| ≥ 1}, (4.41)

then relation (4.39) is satisfied.

We first prove the following lemma.

Lemma 4.5.11. For all matrices A,B,A0, B0 ∈ Cs×s and scalars p, q ∈ C
the following statements are equivalent.

1. q ∈ σ((B0 + pB)−1(A0 + pA)),

2. p ∈ σ(−(A− qB)−1(A0 − qB0)),

assuming that the inverses exist.
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Proof. Because of symmetry, it is enough to prove that the first statement
implies the second. Using the definition of an eigenvalue, the first statement
results in the following sequence of implications:

∃x 6= 0 : (B0 + pB)−1(A0 + pA)x = qx,

∃x 6= 0 : (A0 + pA)x = q(B0 + pB)x,
∃x 6= 0 : (A0 − qB0)x = −p(A− qB)x,

∃x 6= 0 : −(A− qB)−1(A0 − qB0)x = px.

By the definition of an eigenvalue, this yields the second statement.

Proof of Lemma 4.5.10. Using Lemma 4.5.11 we see that z ∈ Σ if and only
if there exists a w such that

w ∈ σ
(
−(A− zB)−1(A0 − zB0)

)
and |w| ≥ 1

or, equivalently, z /∈ S.

Remark 4.5.12. Taking w = eε+iθ with ε > 0 in the definition of Σ provides
a convenient way to calculate points outside the stability domain. If Σ is
used in a formula of the form (4.31) and if all poles of K(z) lie in S, then
the maximum (supremum) can be taken over the curve defined by ε = 0
instead of over the whole set Σ.

4.5.2 Single Grid Methods

In §2.5.5 the convergence analysis of discrete waveform relaxation using
for implicit Euler discretizations was outlined. We now use Lemma 2.5.10
to derive convergence factors for the discrete waveform relaxation method
on infinite time intervals using the LMM, BVM, GLM and BBVM time
discretization schemes. Taking |w| → ∞ shows that the results for finite
time intervals are the same as for time stepping.

To apply Lemma 2.5.10 we have to prove that the convolution kernels
involved are in l1. To this end we use Theorem 2.5.11, a matrix version of
Wiener’s inversion theorem.

LMM

From (4.19) we find the error iteration

0∑
j=−k

αk+je
(ν)
i+j = ∆t

0∑
j=−k

βk+jL
+e

(ν)
i+j + ∆t

0∑
j=−k

βk+jL
−e

(ν−1)
i+j .
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By taking the discrete Laplace transform of these equations and assuming
that e0 = · · · = ek−1 = 0, we get(

a(w)Im −∆tb(w)L+
)
e(ν)(w) = ∆tb(w)L−e(ν−1)(w),

where e(ν)(w) =
∑∞

i=k e
(ν)
i w−i and a and b are the stability polynomials

as defined by (4.36). The discrete Laplace transform of the operator K∆t,
described by (4.19), is therefore

K∆t(w) =
(
a(w)Im −∆tb(w)L+

)−1∆tb(w)L−

= K

(
1

∆t
a

b
(w)
)
.

(4.42)

The following lemma is proved in [JV96b, MN87b]. We omit the proof
since it is very similar to the ones given below for GLMs and BBVMs. The
open stability domain S is the one defined by Definition 4.5.2.

Lemma 4.5.13. If σ(∆tL+) ⊂ S, then K∆t is bounded in lp(∞,Cm).

Combining Lemmas 2.5.10 and 4.5.13 with equations (4.42) and (4.37)
results in the following theorem.

Theorem 4.5.14. Consider K∆t as an operator in lp(∞,Cm) with 1 ≤ p ≤
∞, and assume σ(∆tL+) ⊂ S. Then,

ρ(K∆t) = sup
z∈ 1

∆t Σ

ρ(K(z)) = sup
z∈ 1

∆t ∂Σ

ρ(K(z)). (4.43)

We can take |w| → ∞ and retrieve the results for time stepping and
discrete waveform relaxation on finite intervals.

BVM

The convergence analysis for BVM waveform relaxation on infinite sequences
can formally proceed as in the finite case (see (4.30)). As in the LMM case,
we assume e0, . . . , ek1−1 = 0. The error equation becomes

(A⊗ Im)e(ν) = ∆t(B ⊗ L+)e(ν) + ∆t(B ⊗ L−)e(ν−1), (4.44)

where A and B are no longer matrices but infinite banded Toeplitz operators
of the form

A =


αk1 · · · αk

...
. . . . . .

α0

. . .

 , B =


βk1 · · · βk

...
. . . . . .

β0

. . .

 . (4.45)
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A relation of the form (4.31) can again be derived where the set Σ is now
the spectrum of the operator B−1A. It can be seen that this corresponds
to Σ as defined by (4.38) (for more information we refer to [BT98]). The
BVM case, of course, reduces to the LMM case for k2 = 0.

IRK and GLM

From equations (4.21) and (4.22) we derive that the error iteration for the
discrete waveform relaxation method using a GLM can be described by

ẽ
(ν)
i = (C ⊗ Im)e(ν)

i−1 + ∆t(A⊗ L+)ẽ(ν)
i + ∆t(A⊗ L−)ẽ(ν−1)

i , (4.46)

e
(ν)
i = (D ⊗ Im)e(ν)

i−1 + ∆t(B ⊗ L+)ẽ(ν)
i + ∆t(B ⊗ L−)ẽ(ν−1)

i . (4.47)

Applying the discrete Laplace transform to these equations results in

P (w)ê(ν)(w) = Q(w)ê(ν−1)(w), (4.48)

with

ê(ν)(w) =
[
ẽ(ν)(w) e(ν)(w)

]T
,

P (w) =
[
Is ⊗ Im −∆tA⊗ L+ −w−1C ⊗ Im

−∆tB ⊗ L+ Ir ⊗ Im − w−1D ⊗ Im

]
,

Q(w) =
[

∆tA⊗ L− 0
∆tB ⊗ L− 0

]
.

By eliminating e(ν)(w) from (4.48) we get the following iteration for ẽ(ν)(w):[
Is ⊗ Im−(∆tA+ w−1C(Ir − w−1D)−1∆tB)⊗ L+

]
ẽ(ν)(w)

=
[
(∆tA+ w−1C(Ir − w−1D)−1∆tB)⊗ L−

]
ẽ(ν−1)(w).

If we denote by K∆t the operator mapping ẽ(ν−1) to ẽ(ν), then its discrete
Laplace transform is

K∆t(w) = K

(
1

∆t
(
A+ w−1C(Ir − w−1D)−1B

)−1
)
. (4.49)

The following lemma provides a sufficient condition for K∆t to be bounded.
The open stability domain S is the one defined by Definition 4.5.5.

Lemma 4.5.15. If σ(∆tL+) ⊂ S, then K∆t is bounded in lp(∞,Csm).

Proof. It is sufficient to prove that P (w)−1Q(w) is the discrete Laplace
transform of an l1-sequence. It is clear that both P (w) andQ(w) are discrete
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Laplace transforms of l1-sequences. By Wiener’s theorem we have that
P (w)−1 is the Laplace transform of an l1-sequence if

det(P (w)) 6= 0 for |w| ≥ 1. (4.50)

If this is true then P (w)−1Q(w) is the discrete Laplace transform of the
convolution of two l1-sequences and therefore the operator corresponding
to (4.46) and (4.47) is bounded. Condition (4.50) can hold only if the
condition

det
([

Is − zA −w−1C
−zB Ir − w−1D

])
6= 0 (4.51)

holds for all z ∈ σ(∆tL+) and all |w| ≥ 1. By considering the LU fac-
torization of the matrix, we see that condition (4.51) is equivalent to the
conditions

det(Is − zA) 6= 0, (4.52)

det(Ir − w−1D − zB(Is − zA)−1w−1C) 6= 0. (4.53)

For z to be in S, the matrix D + B(z−1Is − A)−1C has to be well defined
and therefore condition (4.52) is satisfied. Suppose equality holds for some
z ∈ σ(∆tL+) in (4.53). This would mean that

w ∈ σ(D + zB(Is − zA)−1C)

with |w| ≥ 1 and therefore z /∈ S. This contradicts the assumption of the
lemma. Hence, (4.53) is satisfied.

Combining Lemmas 2.5.10 and 4.5.15 with equations (4.49) and (4.40)
results in the following theorem.

Theorem 4.5.16. Consider K∆t as an operator in lp(∞,Csm) with 1 ≤
p ≤ ∞, and assume σ(∆tL+) ⊂ S. Then,

ρ(K∆t) = sup
z∈ 1

∆t Σ

ρ(K(z)) = sup
z∈ 1

∆t ∂Σ

ρ(K(z)). (4.54)

BBVM

Using (4.23) and e(ν)
i = u

(ν)
i − ui ∈ Csm, we find the error iteration

(A⊗Im)e(ν)
i + (A0 ⊗ Im)e(ν)

i−1 =

∆t(B ⊗ L+)e(ν)
i + ∆t(B ⊗ L−)e(ν−1)

i +

∆t(B0 ⊗ L+)e(ν)
i−1 + ∆t(B0 ⊗ L−)e(ν−1)

i−1 .
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Applying the discrete Laplace transform to these equations results in[
(A+ w−1A0)⊗ Im

]
e(ν)(w) =

[
∆t(B + w−1B0)⊗ L+

]
e(ν)(w)+[

∆t(B + w−1B0)⊗ L−
]
e(ν−1)(w).

(4.55)

The discrete Laplace transform of the operator K∆t described by (4.23) is
therefore

K∆t(w) = K

(
1

∆t
(B + w−1B0)−1(A+ w−1A0)

)
.

In order to apply Lemma 2.5.10, the operator K∆t must be bounded. A
sufficient condition is provided by the following lemma. The open stability
domain S is the one defined by Definition 4.5.6.

Lemma 4.5.17. If σ(∆tL+) ⊂ S, then K∆t is bounded in lp(∞,Csm).

Proof. It is sufficient to prove that K∆t(w) is the discrete Laplace transform
of an l1-sequence. Following the same reasoning as for Lemma 4.5.15, we
arrive at the condition

det
(
(A+ w−1A0)⊗ Im −∆t(B + w−1B0)⊗ L+

)
6= 0, (4.56)

for |w| ≥ 1. This condition can hold only if

det
(
(A+ w−1A0)− z(B + w−1B0)

)
6= 0 (4.57)

for z ∈ σ(∆tL+). If we assume that equality holds, then using Lemma 4.5.11
we get

w ∈ σ(−(A− zB)−1(A0 − zB0)).

Because |w| ≥ 1 this would mean that z /∈ S, which contradicts the assump-
tion of the lemma and therefore (4.57) is true.

Combining Lemmas 2.5.10 and 4.5.17 with equations (4.55) and (4.41)
results in the following theorem.

Theorem 4.5.18. Consider K∆t as an operator in lp(∞,Csm) with 1 ≤
p ≤ ∞, and assume σ(∆tL+) ⊂ S. Then,

ρ(K∆t) = sup
z∈ 1

∆t Σ

ρ(K(z)) = sup
z∈ 1

∆t ∂Σ

ρ(K(z)). (4.58)

4.5.3 Multigrid Methods

The analysis of the multigrid methods proceeds in the same way as in §2.6.2
and §3.4, only the sets Σ are different. As in the time stepping case the
results for the two-grid iteration can be found by substituting M(z) for
K(z). The condition on the set Σ becomes (σ(∆tL+) ∪ σ(L̄)) ⊂ S.
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LMM GLM BVM BBVM
αk
βk

σ(A−1) σ(B−1A) σ(B−1A)
a(w)
b(w)

σ
`
(A + C(wIr −D)−1B)−1

´ a(w)
b(w)

σ
`
(B0 + wB)−1(A0 + wA)

´
Table 4.1: The sets Σ to be maximized over in (4.31). First row: finite time
intervals, second row: infinite time intervals (|w| ≥ 1).

4.5.4 Relation to Continuous Waveform Relaxation

The asymptotic convergence factor for the continuous multigrid waveform
relaxation method on infinite intervals using (4.25) as smoother, is given by

ρ = sup
z∈C̄+

ρ(M(z)) = sup
z∈iR

ρ(M(z)),

assuming that (σ(L+) ∪ σ(L̄)) ⊂ C− [JV96a, LO87, Van93]. Therefore,
when Σ ⊂ C̄+, the convergence factor of discrete waveform relaxation is
bounded by that of continuous waveform relaxation. This is the case for
LMMs, GLMs and BBVMs that are A-stable and for Ak1,k2-stable BVMs.

4.6 Convergence Analysis Summary

For the multigrid methods for time-dependent problems described earlier,
the asymptotic convergence factor can be found from

ρ = sup
z∈ 1

∆t ∂Σ

ρ(M(z)). (4.59)

The appropriate sets Σ for different time discretization schemes are listed
in Table 4.1. The first row refers to time stepping and discrete waveform
relaxation on finite intervals; the second row refers to discrete waveform
relaxation on infinite intervals. Note that except for the BVM case the
first row can be derived by taking |w| → ∞. The function ρ(M(z)) can be
estimated by a local mode Fourier analysis of the two-grid iteration applied
to the elliptic equation

zu = Lu+ f.

4.7 Numerical Results

The time discretization schemes used for the numerical experiments are im-
plicit Euler (=BDF1=GBDF1=RadauIIA1), the backward difference for-
mula with 5 steps (BDF5), the Radau IIA implicit Runge-Kutta method
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Figure 4.7: Contour lines of the convergence rate R(z) = − log10 ρ(M(z))
and boundaries of the sets Σ for discrete waveform relaxation on infinite
time domains. The boundary for the BGAM4 discretization coincides with
the imaginary axis.

BDF1 BDF5 GBDF5 GAM4 RAD3 BGBDF5 BGAM4
TS 1.29 1.32 - - 1.16 0.92 1.08
WR 1.13 0.06 0.90 0.86 0.89 0.85 0.79

Table 4.2: Convergence rates obtained by a two-grid local Fourier analysis
(heat equation).

with 3 stages (Radau IIA (RAD)3), the generalized Adams methods with
4 steps (GAM4) and the generalized backward difference formula with 5
steps (GBDF5). All but the implicit Euler method are fifth order methods.
The GAM4 and GBDF5 boundary value methods were also used as block
BVMs (block generalized Adams method (BGAM)4, block generalized back-
ward difference formula (BGBDF)5). The coefficients for the discretization
schemes were given in §4.2.6.

4.7.1 Isotropic Diffusion Equation

As a first example we consider the heat equation

ut = uxx + uyy + f (4.60)

on the unit square. The problem is discretized on a grid with ∆x = ∆y =
2−5. The two-grid analysis was conducted for full weighting restriction, bi-
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BDF1 BDF5 GBDF5 GAM4 RAD3 BGBDF5 BGAM4
TS 1,1 1,5 - - 1,3 1,5 1,4
WR 1020,1 1020,1 1020,1 1020,1 360,3 204,5 255,4

Table 4.3: Number of time steps and number of unknowns per time step for
the time discretizations used in the numerical experiments.

linear interpolation and 1 pre- and 1 postsmoothing red-black Gauss-Seidel
step. Time integration is over Ωt = [0, 1]; i.e., ∆t = 3 · 10−3 for the RAD3
discretization and ∆t = 10−3 for all others. Figure 4.7 shows contour lines
of the predicted convergence rate R(z) together with the boundaries of the
regions Σ of the discretization schemes used in waveform relaxation on infi-
nite time domains. We expect convergence for the BDF5 discretization to be
slow since the boundary of the corresponding set Σ nearly touches the line
R = 0. If these lines were to touch or intersect, convergence would no longer
be guaranteed. Note that all but the BDF5 and BGBDF5 method are A-
stable. The BGBDF5 method is, however, very close to being A-stable and
we expect very good convergence. The results are presented in Table 4.2.
The first row contains the results for time stepping or discrete waveform re-
laxation on a finite domain. These results are obtained by maximizing R(z)
over Σ, which, in this case, is a discrete set of points. The BVMs (GAM4
and GBDF5) cannot be used in a time stepping sense. The second row of
Table 4.2 contains the results for discrete waveform relaxation on infinite
time domains. The results were obtained by maximizing over a number of
points on the curves depicted in Figure 4.7. The points were found by tak-
ing w = exp(2πik/n), k = 0, . . . , n−1, n = 200 in the definitions of the sets
Σ (see Remark 4.5.12). Since Σ = C̄+ for the BGAM4 discretization, the
last result in the table provides a good approximation to the convergence
rate for continuous waveform relaxation. From these results we expect good
convergence for all methods except waveform relaxation with BDF5 time
discretization.

Decreasing ∆t corresponds to a proportional increase in the size of the
sets Σ in Figure 4.7. Similarly, when ∆x and ∆y are decreased simultane-
ously, the contour lines of ρ(M(z)) have approximately the same shape but
on a larger scale (the dependency is quadratic in this case). This can be
explained by observing that scaling L, L+ and L− in the formulae for K(z)
and M(z) is equivalent to the inverse scaling of z. Decreasing ∆x and ∆y
will, of course, also increase the size of all the matrices involved, but this can
be neglected for fine discretizations (large matrices). Figure 4.7 can thus
be used to estimate the convergence for other discretization resolutions by
changing the relative size of the curves depicted.

For the numerical experiments the initial conditions, the Dirichlet bound-
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BDF1 BDF5 GBDF5 GAM4 RAD3 BGBDF5 BGAM4
TS 1.18 1.11 - - 1.33 1.11 1.10
WR 0.92 0.03 0.87 0.87 0.87 0.87 0.88

Table 4.4: Convergence rates obtained from numerical experiments (heat
equation).

ary conditions and the source term f are chosen such that the exact solution
is u = 0. We use a standard W-cycle geometric multigrid algorithm with
5 levels, full weighting restriction, bilinear interpolation and 1 pre- and
1 postsmoothing red-black Gauss-Seidel step. The spatial domain is dis-
cretized using finite differences. The grid sizes are ∆x = ∆y = 2−1 on the
coarsest grid and ∆x = ∆y = 2−5 on the finest grid. As in the analysis
the time steps are ∆t = 3 · 10−3 for RAD3 and ∆t = 10−3 otherwise. The
number of time steps for each method was chosen such that the number of
unknowns per spatial grid point was minimal in the time stepping case and
the same for all methods in the waveform relaxation case. Table 4.3 shows
the number of time steps and the number of unknowns per time step for
each method. All unknowns were set to 1 for the initial approximation.

The results are presented in Table 4.4. It is clear that they correspond
very well to the results obtained from the theoretical analysis. The theoret-
ical convergence rates are not strictly lower bounds (upper bounds on the
convergence factors), since they are asymptotic convergence rates obtained
using a local Fourier mode two-grid approximation. Similar results with
poor convergence for the BDF5 method and convergence rates close to 1
for the other methods were obtained for waveform relaxation on grids of
dimensions 25 × 25 × 104, 28 × 28 × 360 and 29 × 29 × 60. We can conclude
that, for this problem, multigrid methods are very efficient even when using
high order time discretization schemes.

4.7.2 Diffusion Equation with Varying Coefficients

The next example is a more general diffusion equation of the form

ut = (aux)x + (buy)y + f,

a(x, y, t) = exp(10(x− y)),
b(x, y, t) = exp(−10(x− y)).

This is an anisotropic problem since the diffusion coefficients in a certain
point can be very different depending on the direction of diffusion. Standard
multigrid methods do not handle this type of problem well and yield very
slow convergence (e.g. R = 0.1). However, as we saw in Chapter 3, we can
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BDF1 BDF5 GBDF5 GAM4 RAD3 BGBDF5 BGAM4
TS 1.50 1.34 - - 1.91 1.34 1.47
WR 1.22 0.69 1.22 1.22 1.22 1.22 1.22

Table 4.5: Convergence rates for the MGS iteration (diffusion equation with
varying coefficients).

extend multigrid methods developed for time-independent anisotropic prob-
lems to time-dependent ones. Here, we used the MGS method, described
in §3.3.4, which uses the same simple smoothers as before, together with an
extended hierarchy of coarse grids.

The same discretizations, initial and boundary conditions and initial
approximation were used as for the previous example. The multigrid algo-
rithm uses full weighting restriction, bilinear and linear interpolation and
1 pre- and 1 postsmoothing step. The smoothing consists of a multigrid
semicoarsening step in the x-direction followed by one in the y-direction,
both using only 1 presmoothing red-black Gauss-Seidel step. A hierarchy of
5× 5 grids is used. The results are presented in Table 4.5. The convergence
history of the MGS waveform relaxation method is visualized in Figure 4.8
for different time discretization schemes. Except for the BDF5 method, the
convergence histories are indistinguishable. We see once more that it is pos-
sible to obtain very efficient multigrid methods even when high order time
discretization schemes are used.

4.8 Conclusions

We have shown by theoretical analysis and numerical experiments that it
is possible to develop efficient multigrid methods for high order time dis-
cretizations of parabolic equations. The analysis shows that the stability
of the time discretization scheme is important for the convergence of multi-
grid methods. Among schemes with good stability properties (such as A-
stability), the convergence is comparable. Depending on the problem at
hand, a suitable scheme can be chosen taking into account other properties
such as implementation cost, efficiency and availability of error estimators.
Since the cost of a multigrid iteration in a time stepping or block time step-
ping scheme is proportional to the cost of solving a sequence of scalar ODEs
over a time step or over a block of time steps, it suffices to consider the prop-
erties of the time discretization scheme when applied to scalar equations.
Furthermore, the convergence for parabolic problems is roughly equivalent
to the convergence of the corresponding multigrid methods for elliptic equa-
tions. This means that both theoretical analysis and experience with elliptic
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Figure 4.8: Convergence of MGS method (diffusion equation with varying
coefficients).
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equations can be used as guidelines to determine whether it is worthwhile
to invest in the implementation of a multigrid method. Experience with
the elliptic case also gives an indication of how the multigrid method will
compare to other iterative methods such as GMRES or BiCGstab. It is also
possible to use multigrid as a preconditioner for these methods [WOW00].
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Chapter 5

Spectral Time
Discretization Schemes

In this chapter we study the use of spectral methods for the time discretiza-
tion of parabolic PDEs.

5.1 Introduction

In the previous chapter we have shown how high order time discretization
schemes can be used to solve parabolic PDEs. The key is to use a multigrid
method with a smoother that updates a block of unknowns simultaneously.
If BVMs are used for the time discretization a band solver is used to solve
the systems at each grid point. For BBVMs and IRK methods, a dense
solver can be used. For equidistant time meshes BBVMs are A-stable only
for low orders. Better stability properties can be obtained by choosing
an appropriately clustered mesh for the BBVMs. It is well known that
IRK methods exist that are A-stable for any order. These methods can be
interpreted as polynomial collocation methods on non-equidistant meshes.

In this chapter we investigate spectral collocation methods. These meth-
ods also use clustered grids to obtain high accuracy and good stability prop-
erties. Furthermore, the matrices describing such methods are very easy to
generate. As for BBVMs and IRK methods, full use can be made of highly
optimized dense matrix solvers. For Chebyshev and Fourier spectral collo-
cation it is even possible to use Fourier transforms to solve the systems. We
concentrate here on Chebyshev spectral collocation.

117
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5.2 Spectral Methods

There are two main types of spectral methods. Non-interpolating spec-
tral methods represent an approximation to a function by the coefficients
of an expansion in certain basis functions. Interpolating spectral meth-
ods use the values of the approximated function at specific mesh points.
Non-interpolating and interpolating spectral methods are also called spec-
tral and pseudospectral methods. For many types of problems and methods
a mathematically equivalent formulation can be given using either perspec-
tive. Furthermore, many operations on spectral approximations, such as
differentiation, integration and convolution, will be implemented by trans-
forming to the most convenient representation, doing the operation and
transforming back. A non-interpolating representation is said to belong to
the frequency domain. An interpolating representation is said to belong to
the physical domain. Differentiation of a periodic function given by its val-
ues at equidistant points, for example, can be performed by using a Fourier
transform to go from the physical to the frequency domain, multiplying
each of the resulting coefficients by a scalar and transforming back to the
physical domain.

In this chapter we use the approach of [Tre00] based on interpolation. A
spectral method based on collocation at the zeros of Chebyshev polynomials
can be found in [Wri64]. Relationships between collocation methods and
IRK methods are considered in [Wri70]. For other introductions to spectral
and pseudospectral methods see, for example, [For96, GO77, Boy01]. A
method using spectral methods in space and time for parabolic problems is
described in [TE89].

Interpolating spectral methods approximate derivatives as follows: given
a function v, choose points xj and construct the interpolating polynomial
p such that p(xj) = v(xj). The derivative v′(xj) can now be approximated
by wj = p′(xj). Since we are using interpolation to approximate the deriva-
tives, the choice of the interpolation points is very important. More points
are necessary near the boundary to constrain the interpolating polynomial.
Figure 5.1 illustrates the oscillations that may be present when using high
order interpolation on an equidistant grid. The behavior of the interpolant
on the Chebyshev mesh (5.1) is much better. For an explanation based on
potential theory see [Tre00].

5.3 Chebyshev Spectral Differentiation

Common choices for the interpolation points are the abscissae for Gaussian
quadrature formulae such as the Gauss-Legendre, Gauss-Legendre-Radau,
Gauss-Legendre-Lobatto, Gauss-Chebyshev, Gauss-Chebyshev-Radau and
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equispaced points
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max error = 5.900070

Chebyshev points
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Figure 5.1: The function (1+16x2)−1 interpolated by polynomials of degree
16 on equidistant and Chebyshev meshes.

Gauss-Chebyshev-Lobatto points. The Gauss points do not include the
boundary points of the interval. The Radau points include one boundary
point and the Lobatto points include both boundary points.

We use here Chebyshev points since this leads to simple expressions
as well as the possibility to use fast transform methods. More specifically
we use the Gauss-Chebyshev-Lobatto points. The use of Legendre points
provides a higher order approximation at the boundary points, but it is not
obvious whether this is a significant advantage.

The Gauss-Chebyshev-Lobatto points are given by

xj = cos
jπ

n
, j = 0, . . . , n. (5.1)

These points are also called the Chebyshev extreme points since they are
the locations of the extrema of the Chebyshev polynomial of degree n in
the interval [−1, 1]. Figure 5.2 is a graphical representation of (5.1).

Since spectral differentiation is a linear operation, the mapping from the
vector v̄, containing the values vj , to the vector w̄, containing the values
wj , can be represented by a matrix D̄. In the case of spectral differenti-
ation using the Chebyshev extreme points, the matrix has a very simple
explicit form [Tre00]. For each n ≥ 1 the diagonal entries of the Chebyshev
differentiation matrix D̄ ∈ R(n+1)×(n+1) are given by

D̄1,1 =
2n2 + 1

6
, D̄n+1,n+1 = −2n2 + 1

6
,

D̄j+1,j+1 =
−xj

2(1− x2
j )
, for j = 1, . . . , n− 1.
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Figure 5.2: The Gauss-Chebyshev-Lobatto points.

The off-diagonal elements are given by

D̄i+1,j+1 =
1 + δi + δn−i

1 + δj + δn−j

(−1)i+j

xi − xj
, i 6= j, i, j = 0, . . . , n,

where δ0 = 1 and δi = 0 for i 6= 0. The diagonal elements of D̄ can also be
calculated as

D̄i,i = −
∑
i 6=j

D̄i,j , (5.2)

which follows from the fact that the derivative of a constant function is zero
and therefore D̄1n+1 = 0. The matrix derived using (5.2) has better stabil-
ity properties in the presence of rounding errors [Tre00]. For differentiation
matrices for other choices of interpolation points, see [Tre00, For96].

Spectral differentiation corresponds to multiplication by D̄. Spectral
integration corresponds to the inverse operation. It is clear that the result of
integration is only unique up to a constant, since each constant vector is an
eigenvector of D̄ with eigenvalue 0. In the case of Chebyshev interpolation
points, spectral differentiation and integration can be done in O(n log n)
operations using fast Fourier transforms (FFT) or discrete cosine transforms
(DCT) [Tre00, GO77, Boy01].

In the following section, we will need a Chebyshev differentiation matrix
for functions defined on the interval [0,∆t] instead of [−1, 1]. The cor-
responding Chebyshev points can be obtained by shifting and scaling the
interpolation points xj to

tj =
1− xj

2
∆t.

This linear transformation results in a new differentiation matrix, given by

D̃ = − 2
∆t

D̄.
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5.4 Chebyshev Spectral Collocation for ODEs

We can now use the spectral differentiation matrix to discretize ODEs.
Consider the problem

v′(t) = f(v(t)), with v(0) = v0,

on the interval [0,∆t]. The unknown function v can be approximated by a
polynomial interpolating at the points tj . The ODE is then approximated
by the system of equations

D̃ṽ = f(ṽ),

The matrix-vector product can be partitioned as

D̃ṽ =
[
d0 D

] [
v0
v

]
. (5.3)

The vector v denotes the approximation to the vector of solution values[
v(t1) · · · v(tn)

]T
.

Since v0 is given, the first row of (5.3) can be ignored and the system of
equations to solve becomes

Dv = −d0v0 + f(v). (5.4)

In general, this system of equations is solved using a Newton iteration which
requires a linearization of the function f . For the stability analysis and
numerical experiments further on in this chapter, we assume, like in the
previous chapters, that f is a linear function.

Fast transform techniques can be derived to solve systems with matrix
D efficiently [GO77]. If an efficient procedure for spectral integration is al-
ready available, for example, applying it twice is sufficient to solve a linear
system with matrix D. It is also possible to transform to the frequency
domain, solve a tridiagonal system and transform back to the physical do-
main [GO77, ISW92]. It should be noted that it is not straightforward to
determine in which cases fast transform methods will outperform methods
based on dense matrix algorithms. The choice will depend on the size of
the systems, the implementation and the hardware.

So far we have explained how to use spectral collocation to solve a sin-
gle scalar ODE. Chebyshev spectral collocation can also be used to solve
systems of ODEs, but except for very small n, i.e., low orders of accuracy,
solving the linear systems using direct solvers becomes prohibitively expen-
sive. Furthermore, the use of fast transforms is no longer straightforward.
For systems of ODEs especially large systems, iterative methods have to be
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considered. As we saw in the previous chapters, multigrid methods for dis-
cretized parabolic equations essentially only need a solver for scalar ODEs.
Using high order methods, such as Chebyshev spectral collocation, therefore
poses no problem, as will be explained and shown in §5.7.

5.5 Relation to Other Methods

We have already discussed LMMs, IRK methods, BVMs, BBVMs and GLMs
in Chapter 4. In the previous section we introduced Chebyshev spectral
collocation (CSC). Some other closely related methods are continuous and
discontinuous Galerkin methods and differential quadrature methods. It is
well known that the Gauss, Radau IIA and Lobatto IIIA IRK methods can
be interpreted as polynomial collocation methods [HW96, But03]. A k-step
BVM can be interpreted as spline collocation method with a spline of order
k [MST]. For BBVMs the number of steps in an interval is often equal
to k, which means that these methods can also be considered polynomial
collocation methods. Some methods can be shown to be mathematically
equivalent. We will highlight some specific relations here.

5.5.1 CSC as an IRK Method

Chebyshev spectral collocation can be applied to subintervals as is done
for BVMs to obtain BBVMs. The resulting method is essentially an IRK
method as well as a BBVM with a non-uniform mesh.

To see that block CSC is an IRK method we consider equation (5.4) to
calculate s solution values in one time step

d0v0 +Dv = f(v),

where d0, v ∈ Rs and D ∈ Rs×s. Multiplying by D−1 results in

v = −D−1d0v0 +D−1f(v).

Because D̃1s+1 = 0, and thus −D−1d0 = 1s, these equation are of the same
form as the IRK system

v = v0 + ∆tAf(v).

As in the Radau IIA and Lobatto IIIA formulae, the last stage value is also
the new approximation for the solution.

The classical Gauss, Radau and Lobatto methods are based on the Leg-
endre family of points. It is clear that methods based on the Chebyshev
family of points are another possibility. Methods based on Legendre points
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have a higher order of approximation at end points, but this is not neces-
sarily an important advantage, especially when dealing with stiff problems
[BT98, Boy01, HW96, But03]. Fast transforms for Legendre spectral meth-
ods are much more complicated, hence, direct solvers for the linear systems
arising from (5.4) are usually more efficient. Note that even for Chebyshev
methods dense matrix methods are often more efficient than methods based
on fast transforms. The choice of method depends very much on the size
of the systems to be solved as well as on the quality of the implementation
and the type of hardware used.

5.5.2 CSC as a BVM

In Chapter 4 we considered only BVM on uniform meshes. However, these
methods can be formulated for any mesh [BT98]. For a BVM on an arbitrary
mesh, every equation corresponds to different time step ∆ti = ti−ti−1. The
equations can be written compactly as

a0v0 +Av = Hb0f(v0) +HBf(v), (5.5)

where the different time steps are incorporated in the scaling matrix

H =

 ∆t1
. . .

∆ts

 .
In [BT98] it is shown that by introducing a few non-uniformly spaced points
near the endpoints of the time interval, it is possible to construct A-stable
BVMs of any order. By using a mostly uniform mesh the resulting ma-
trices are mostly Toeplitz, which can be an advantage for computation.
A natural next step, however, is to use completely non-uniform meshes.
The n-step GBDF (corresponding to (5.5) with b0 = 0 and B = I) on
the Gauss-Chebyshev-Lobatto points is mathematically equivalent to CSC
given by (5.4) through the identities

d0 = H−1a0 and D = H−1A.

It should be noted that the methods to calculate coefficients of BVMs, finite
difference methods and spectral methods on general grids are very similar
[BT98, For96, For98, Bri03].

5.5.3 IRK Methods as BVMs

The well known Gauss, Radau IIA and Lobatto IIIA methods can be inter-
preted as polynomial collocation at the Gauss-Legendre, Gauss-Legendre-
Radau and Gauss-Legendre-Lobatto points. The GBDF class of BVMs can
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also be interpreted as polynomial collocation methods. Two polynomial
collocation methods using the same set of points, will be mathematically
equivalent. The n-step GBDF on Gauss-Legendre-Radau points, for exam-
ple, is mathematically equivalent to the n-stage Radau IIA method. The
n-stage Gauss method can be retrieved by constructing the n-point GBDF
on the Gauss-Legendre points. The resulting equations calculate the stage
values of the Gauss IRK method. The value at the endpoint of the time step
is not explicitly calculated by the GBDF method, but it can be obtained
by polynomial extrapolation which is in this case equivalent to using the
corresponding Gaussian quadrature formula.

BVMs can be considered a general and practical method to construct
discretizations. They allow derivation, within the same framework, of spline
collocation methods and finite difference methods on uniform and non-
uniform meshes, as well as spectral collocation and implicit Runge-Kutta
methods. Note that the use of BVMs is of course not restricted to dis-
cretization in time (see [BT98] for PDE examples).

5.6 Stability of Chebyshev Spectral Colloca-
tion

One can easily derive that the open stability domain S (see §4.5.1) for a
CSC method is given by

S = {z ∈ C : |R(z)| < 1} (5.6)

with
R(z) = en

T (D − zIn)d0. (5.7)

Similarly, one finds that the set Σ (see §4.5.1) is given by

Σ = {z ∈ σ(D + w−1en
T d0), |w| ≥ 1}. (5.8)

The vector en ∈ Rn is the last column of the identity matrix In. These
expressions also follow from the formulation of a CSC method as an IRK
method or as a BBVM. Setting A = D, a0 = d0, B = ∆tI and b0 = 0
in (4.41), for example, leads to (5.8). The same result can be derived
from (4.40). As for the time discretization methods discussed in Chap-
ter 4, the sets S and Σ are each other’s complement in the complex plane.
Points on the boundary of Σ (and therefore S) can be found by setting
w = eiθ in (5.8). Figure 5.3 shows the boundaries of the stability domains
for the Chebyshev spectral collocation methods up to order 10 by plotting
the points corresponding to θ = jπ/m, j = 0, . . . ,m − 1, m = 256. From
this figure one could be tempted to conclude that these methods are A-
stable for any order. A closer look at the imaginary axis, however, shows
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Figure 5.3: Stability domain boundaries for the Chebyshev spectral collo-
cation methods of orders 1 to 10.

that this is not the case. Figure 5.4 illustrates that the methods of orders
3 to 10 are not A-stable. The methods of orders 1 and 2 are A-stable. The
method of order one is the implicit Euler method. The method of order
two is equivalent with the BGBDF-method with two equal steps. As de-
scribed in [Wri70, HW96, But03], a method is A-stable if and only if its
stability function R(z) is analytic in the left half plane and |R(iy)| ≤ 1
for y ∈ R. From (5.7) it follows that the first condition always holds for
Chebyshev spectral collocation methods since the eigenvalues of D are al-
ways contained in the right half plane [GO77, Boy01]. The rational function
R(z) can be written as

R(z) =
P (z)
Q(z)

where P (z) and Q(z) are polynomials. The second condition for A-stability
is equivalent to E(y) ≥ 0 where

E(y) = Q(iy)Q(−iy)− P (iy)P (−iy)

is a polynomial in y2 [Wri70, HW96, But03]. The polynomials E(y) for the
methods of orders 1, 2, 3 and 4 are y2, y4, y4(9y2 − 32) and y6(y2 − 16)
which again shows that the methods of order 1 and 2 are A-stable. For
collocation methods based on the zeros of standard orthogonal polynomials
(Legendre, Chebyshev, Laguerre, Hermite), E(y) can always be written as a
polynomial with integer coefficients. Similarly, the boundaries of the stabil-
ity domains of such methods correspond to the zero level curve of bivariate
polynomials with integer coefficients. The boundary of the stability domain
of the Chebyshev spectral collocation method of order 3, for example, is



126 CHAPTER 5. SPECTRAL TIME DISCRETIZATION SCHEMES

0

2.5

5

7.5

10

12.5

15

−0.1 −0.05 0 0.05 0.1

Figure 5.4: Detail of Figure 5.3 near the imaginary axis.

given by all (x, y) ∈ R2 such that

9 y6 +
(
27 x2 − 114 x− 32

)
y4 +

(
27 x4 − 228 x3 + 704 x2 − 896 x

)
y2

+ 9 x6 − 114 x5 + 736 x4 − 3200 x3 + 6144 x2 − 18432 x = 0.

It is clear from Figure 5.3 that, even though they are not A-stable, the
Chebyshev spectral collocation methods have very good stability properties.
A time discretization method is said to be A(α)-stable [HW96, But03] if the
stability domain S contains the sector

Sα = {z ∈ C : | arg(−z)| < α, z 6= 0}.

This weaker form of stability corresponds to A-stability for α = π
2 . Fig-

ure 5.5 shows the stability domain and the corresponding sector Sα for the
BDF method of order 3. Table 5.1 shows some values of α for different meth-
ods and orders. The values are calculated by minimizing | arg(−z)| where
the z-values are obtained by setting w = eiθ in (5.8), with θ = jπ/(m+ 1),
j = 1, . . . ,m and m = 1024. The standard Gauss, Radau and Lobatto IRK
methods are not represented in the table since they are A-stable (α = 90◦)
for any order.

5.7 Chebyshev Spectral Collocation for PDEs

5.7.1 Model Problem

As in the previous chapters we consider the linear parabolic equation

ut = (aux)x + (buy)y + cu+ f,
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Figure 5.5: Boundary of the stability domain and corresponding sector Sα

for the BDF method of order 3 (α = 73◦).

α BGBDF BGAM CSC
1 90.0000 90.0000 90.0000
2 90.0000 90.0000 90.0000
3 89.3188 90.0000 89.8903
4 87.7322 90.0000 89.7473
5 85.6488 90.0000 89.6995
6 83.0153 90.0000 89.7638
7 79.6949 90.0000 89.9361
8 75.9502 90.0000 89.9995
9 72.5365 86.7188 89.9971

10 69.5617 82.3122 89.9912

Table 5.1: Values of α in degrees for several A(α)-stable methods.
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on the unit square, i.e., (x, y) ∈ [0, 1]2. Using finite difference in space
(method of lines), this PDE can be approximated by the stiff system of
ODEs

u̇ = Lu+ f,

where L is a large, sparse, structured matrix (see Chapters 2 and 3 for a de-
tailed explanation). Time integration using Chebyshev spectral collocation
results in the system of equations

(D ⊗ Im)u+ (d0 ⊗ u0) = (In ⊗ L)u+ f, (5.9)

where u, f ∈ Rnm and u0 ∈ Rm. This system of nm equations can be
solved using the same multigrid techniques as in Chapter 4. For a Jacobi or
Gauss-Seidel smoother m systems with a matrix of the form D− lkkIn have
to be solved. Formulation (5.9) corresponds to the use of the CSC method
as a spectral method. In this case, where one spectral discretization is used
for the whole time interval, n would typically be quite large. The CSC
method can also be used on subintervals. This leads to the formulation

(D ⊗ Im)ui + (d0en ⊗ Im)ui−1 = (In ⊗ L)ui + fi, for i = 1, · · · ,

where en =
[

0 · · · 0 1
]T . The first approach is more similar to a

BVM discretization, the second approach is more similar to an IRK or
BBVM discretization.

5.7.2 Theoretical Convergence Analysis

We first consider the isotropic diffusion equation

ut = uxx + uyy + f. (5.10)

This corresponds to setting a = b = 1, c = 0 in model problem (5.7.1).
The convergence of multigrid time stepping or waveform relaxation methods
with Chebyshev spectral collocation in time can be analyzed using the same
Fourier-Laplace analysis as in the previous chapters. The following results
can easily be obtained using the formulation of CSC as a BVM or IRK
method. As before the asymptotic convergence factor is calculated by

ρ = max
z∈Σ

ρ(M(z)). (5.11)

The quantities ρ(M(z)) can be computed using standard multigrid analysis
techniques. For continuous waveform relaxation on infinite intervals Σ = C̄+

or equivalently z ∈ iR. The resulting asymptotic convergence factor is an
upper bound for iterative methods based on A-stable time integration. For
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CSC or block CSC on finite sequences setting A = D and ∆tB = I in
Theorem 4.4.2 or ∆tA = D−1 in Theorem 4.4.3 we find

Σ = σ(D) ⊂ C+.

For block CSC on infinite sequences setting A = D, a0 = d0, B = ∆tI and
b0 = 0 in (4.41) leads to (5.8)

Σ =
⋃
|w|≥1

σ(w−1d0en
T +D).

The same result can be derived from (4.40). Because CSC methods are
A(α)-stable with α ≈ π

2 , the asymptotic convergence factor for continuous
waveform relaxation on infinite intervals gives a good approximative bound
for methods using CSC in time.

As usual we report convergences rates

R = − log10 ρ, (5.12)

instead of convergence factors ρ. The spectral picture in Figure 5.6 shows
contours of R(z) = −log10ρ(M(z)) together with the boundaries of the
stability domains for the 5-step GBDF, BGBDF and the CSC method on 1
and 5 intervals. The CSC1 method is the standard implicit Euler method.
The other methods are all of order 5. Note that the BGBDF5 method is not
A-stable since its curve is not entirely contained in the right half plane. This
becomes more pronounced for higher order BVMs on equidistant points.
Since − log10 is a monotonically decreasing function, it follows from (5.12)
and (5.11) that the theoretical asymptotic convergence rate is given by

R = min
z∈Σ

R(z),

where Σ is the boundary of the stability region of the time discretization
method. The asymptotic convergence rate corresponds to the average num-
ber of digits gained per iteration (asymptotically). Table 5.2 shows numer-
ical values for the curves in Figure 5.6. The fact that the curve for the
BGBDF5 method protrudes slightly into the left half plane is reflected by a
lower convergence rate. It is possible to construct problems for which this
methods becomes very inefficient. This is the case for example for problems
characterized by eigenvalues close to the imaginary axis. In practice, how-
ever, the method will usually work well. For higher order GBDF methods
on equidistant points, the lack of A-stability becomes more pronounced and
the convergence rates are even lower.
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Figure 5.6: Spectral picture.

GBDF5 BGBDF5 CSC1 CSC5
0.80 0.74 1.13 0.79

Table 5.2: Theoretical convergences rates.
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Figure 5.7: Error convergence.

5.7.3 Numerical Experiments

First, we investigate the discretization error of CSC and compare it to the
discretization error of other methods. The isotropic diffusion equation (5.10)
is discretized in space on a regular square grid with mesh sizes ∆x = ∆y =
1
8 . The Dirichlet boundary conditions and the right hand side are chose
such that the exact solution is

u(x, y, t) = sin
2πt
10

.

Because the solution does not depend on the spatial variables, the dis-
cretization error is only due to the time discretization. The time interval
([0, 0.36]) and the number of unknowns in the time dimension (360) are the
same for all methods. This choice results in a time step ∆t = 10−3 for the
implicit Euler method (BDF1). The systems of equations are solved using a
standard multigrid V-cycle on 3 grids. Figure 5.7 shows the norm of the dif-
ference between the approximate and the exact solution. The discretization
error is the smallest difference reached by a method and corresponds to the
horizontal parts of the curves in Figure 5.7. As expected higher order meth-
ods are more precise. The methods of order 5 all give essentially the same
discretization error. The fact that the GBDF and BGBDF methods of order
20 do not attain the same discretization error as the CSC method of order
20 is due to the poor conditioning of the systems resulting from the high or-
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Figure 5.8: Residual convergence.

der time discretization on uniform grids. Figure 5.8 shows that the residual
norm does not converge to machine precision for the GBDF and BGBDF
methods. It should be noted that calculating the coefficients of high order
BVMs using the standard Vandermonde solvers results in a serious loss of
accuracy. This is not the cause of the problem as Figure 5.8 shows. Fur-
thermore, essentially the same results were obtained when the coefficients
were calculated accurately using the explicit expressions from [AT02]. The
poor conditioning of the matrices for uniform meshes is essentially due to
the size and the sign of the matrix entries.

Table 5.3 gives estimated convergence rates for a problem with exact
solution u(x, y, t) = 0 discretized on a grid with mesh sizes ∆x = ∆y = 1

32 .
The convergence factor for iteration ν is given by

ρ(ν) =
‖u(ν)‖
‖u(ν−1)‖

and the corresponding convergence rate is

R(ν) = − log10 ρ
(ν).

For each method 20 iterations are performed. The estimate in Table 5.3
is the average of the last 10 convergence rates (this corresponds to (2.6)
with ν = 20 and µ = 10). It is clear that for low orders the methods
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BDF1 GBDF5 BGBDF5 CSC5 GBDF20 BGBDF20 CSC20
0.97 0.87 0.87 0.87 0.11 0.10 0.88

Table 5.3: Experimental convergence rates.

presented here perform essentially the same. For high orders, however, the
convergence of the methods using uniform time meshes is quite poor. The
almost A-stable CSC that uses a clustered time mesh, on the other hand,
maintains a good convergence for high orders.

5.8 Conclusions

From Chapter 4 we know that the convergence of iterative methods for
systems of ODEs depends on the stability of the time discretization. If
continuous waveform relaxation converges on [0,∞), then a discrete method
using an A-stable ODE integrator will converge as well. Chebyshev spectral
collocation methods are very close to A-stable for any order, resulting in
good convergence. Such an implicit high order method is very expensive
when applied directly to large system of ODEs, but in an iterative method
such as Jacobi and Gauss-Seidel waveform relaxation only scalar ODEs
have to be solved. For waveform relaxation it is therefore worth considering
time discretization schemes that would be too expensive in other cases.
Chebyshev spectral collocation is well suited as a time discretization for
waveform relaxation if a high order of approximation is needed and possible,
that is if the problem is smooth. In such cases a relatively small number of
unknowns can provide a very high accuracy. Chebyshev spectral collocation
involves systems with a dense matrix that has a simple explicit formula. In
some cases it may be worthwhile to solve these systems using (vectorized)
fast transform methods instead of dense matrix methods.
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Chapter 6

Problems with Delay

The convergence of (multigrid) waveform relaxation methods is studied in a
Fourier-Laplace framework for a specific class of delay differential equations.
This leads to quantitative convergence estimates, which are illustrated and
validated by means of numerical experiments with two delay partial differ-
ential model problems.

6.1 Introduction

In the previous chapters we considered iterative methods for systems of
ordinary differential equations (ODE) of the form

v̇(t) = f(t, v(t)), t ∈ [0, tF ]
v(0) = v0.

More specifically, we used multigrid methods for stiff systems derived by
spatial discretization of parabolic partial differential equations (PDE). For
ODEs the derivative of the solution depends only on the value of the evolving
quantities at the current time. For delay differential equations (DDE) the
derivative of the solution can depend on the whole history of the evolving
quantity. The specific subclass we discuss here consists of DDEs with one
constant delay

v̇(t) = f(t, v(t), v(t− τ)), t ∈ [0, tF ],
v(t) = v0(t), t ∈ [−τ, 0].

Note that the initial condition specifies the function for a whole interval
and no longer just at a single point. Such equations can be obtained from

135
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discretizing certain delay partial differential equations (DPDE). A simple
example is the heat equation with one constant delay

ut = uxx + u(t− τ).

Other examples of DPDEs arise for example in population dynamics and in
the study of non-linear materials with memory. An example from population
dynamics is the Hutchinson equation with diffusion

ut = auxx + bu(1− cu(t− τ)),

which models the density of a migrating and reproducing population. A
similar equation with distributed delay is given by

ut = auxx + b(1−
∫ t

−∞
Q(t− x)u(s)ds).

Such models appear in simulations where the age structure of a population
is taken into account. Other integrodifferential equations such as

ut = auxx + (1 + bu− (1 + b)g ∗ u),

where ∗ denotes convolution, are considered in [Bri90]. Many more ex-
amples of DPDEs can be found in the monographs by Wu [Wu96] and by
Kolmanovskii and Myshkis [KM99].

Waveform relaxation was originally developed for solving large systems
of ODEs. The method has, however, also been applied to DDEs [Bjø94,
JKL97, ZKV99]. In particular, the authors of [ZKV99] introduced the
so-called Picard waveform relaxation methods and derived error estimates
which hold under certain Lipschitz conditions for the right-hand sides of the
equations. Their results are illustrated by means of numerical experiments
for semi-discrete DPDEs of parabolic type. Their theory provides condi-
tions for convergence, but the results are qualitative and give no indications
about the speed of convergence. In this chapter, quantitative convergence
estimates of waveform relaxation methods for DDEs are derived by analyz-
ing the methods in the classical Fourier-Laplace framework of Miekkala and
Nevanlinna [MN87a]. The analysis is illustrated for the numerical method of
lines approximation of a two-dimensional diffusion equation extended with
a term that has a constant delay in time. A similar Fourier-Laplace frame-
work is used to investigate the acceleration of the basic waveform methods
by multigrid techniques.

This chapter is organized as follows. In §6.2 spatial discretization of a
two-dimensional diffusion equation with a constant delay in time is consid-
ered. The Picard waveform relaxation method, introduced in [ZKV99] is
analyzed in §6.3. Section 6.4 introduces and analyzes non-Picard waveform
relaxation methods. Multigrid waveform relaxation for the model problem
is described in §6.5. Results of numerical experiments are given in §6.6.
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6.2 Model Problem

We consider the two-dimensional parabolic DPDE

∂u(t, x, y)
∂t

= a

(
∂2u(t, x, y)

∂x2
+
∂2u(t, x, y)

∂y2

)
+ bu(t− τ, x, y), (6.1)

for (x, y) ∈ Ω = [0, d]2, t ∈ [0, tF ]. The constants a and τ are assumed to
be positive. The initial and boundary conditions are chosen such that the
exact solution becomes u(t, x, y) = 0. That is, u(t, x, y) = 0 for (t, x, y) ∈
([−τ, 0]× Ω) ∪ ([0, tF ]× ∂Ω).

Applying to (6.1) the method of lines using the same finite difference
discretization as in §2.3.1 and §3.2 leads to the following system of DDEs,

u̇i,j(t) = ah−2
(
− 4ui,j(t) + ui−1,j(t) + ui+1,j(t) + ui,j−1(t) + ui,j+1(t)

)
+ bui,j(t− τ),

for i, j = 1, . . . , n−1 and with ∆x = ∆y = h = d/n and ui,j(t) ≈ u(ih, jh, t).
In matrix notation this gives

u̇(t) = Lu(t) + bu(t− τ), (6.2)

for t ∈ [0, tF ], with u(t) = 0 for t ∈ [−τ, 0]. Here, L ∈ R(n−1)2×(n−1)2 is the
matrix with the familiar block-tridiagonal structure with tridiagonal blocks
(see §2.3.1). The vector u(t) contains approximations u(n−1)(i−1)+j(t) ≈
u(t, ih, jh) to the solution of the DPDE.

For the examples the parameters are chosen such that (6.1) has a stable
zero solution. The following result is used [HV03, Corollary 3.3].

Theorem 6.2.1. The zero solution of (6.1) is asymptotically stable iff

� a ≥ 0 and

� −2π2a/d2 < −b < θ
τ sin θ

where θ is the root of θ cos θ = −2τaπ2/d2 such that π/2 ≤ θ < π.

Note that the stability of (6.1) is determined by the PDE coefficients a
and b, the magnitude of the delay τ and the size of the spatial domain d.
Figure 6.1(a) shows the stability region in the (τ, d)-plane for a = 1 and
b = −1. Points below the curve result in stable solutions. Figure 6.1(b)
shows the stability region in the (τ, b)-plane for a = 1 and d = 1. Points
between the curves result in stable solutions. In [HV03] it is shown that the
stability region of the semi-discrete problem (6.2) is a subset of the stability
region of (6.1). Because the difference is negligible for small mesh sizes h,
the details are omitted here. To simplify the notation the parameters a and
b are set to 1 and −1.
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Figure 6.1: Stability regions for the model problem.

6.3 Picard Waveform Relaxation

The Picard waveform relaxation methods for DDEs that were introduced in
[ZKV99] can be applied to (6.2). This gives, for t ∈ [0, tF ],

u̇(ν)(t)− L+u(ν)(t) = L−u(ν−1)(t)− u(ν−1)(t− τ) (6.3)

where u(ν)(t) = 0 for t ∈ [−τ, 0] and L = L++L−. The term ‘Picard’ is used
to stress that the delay term is taken from a previous iterate in all these
schemes. The direct/Picard method is defined by L+ = L, L− = 0, while,
the Jacobi/Picard and Gauss-Seidel/Picard waveform relaxation schemes
correspond to taking for L+ the diagonal or lower triangular part of L.
See Chapter 2 for an explanation of the standard Jacobi and Gauss-Seidel
waveform relaxation methods.

In [ZKV99], the convergence of the Picard waveform relaxation methods
was analyzed for general DDEs by deriving error estimates which depend
on Lipschitz conditions of the right-hand side. While such an analysis gives
rise to qualitative results for a general class of problems, the current model
problem also allows a quantitative analysis of the waveform methods in
the Fourier-Laplace framework developed in [MN87a]. This framework is
described in §2.5.5 and was used in the previous chapters.

To start the analysis of the Picard waveform relaxation methods, (6.2)
is rewritten as

u̇(t)− L+u(t) = L−u(t)− u(t− τ), t ∈ [0, tF ].
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Subtracting this equation from (6.3) gives the error equivalent of the latter,

ė(ν)(t)− L+e(ν)(t) = L−e(ν−1)(t)− e(ν−1)(t− τ), t ∈ [0, tF ], (6.4)

where e(ν)(t) = u(ν)(t)−u(t). If the Laplace transform of e(ν)(t) is denoted
by ẽ(ν)(z), Laplace transforming (6.4) results in

ẽ(ν)(z) = K(z)ẽ(ν−1)(z), (6.5)

with the Picard waveform relaxation symbol

K(z) = (zI − L+)−1(−e−τzI + L−). (6.6)

By an inverse Laplace-transform argument, the relation,

e(ν)(t) = Ke(ν−1)(t)

=
∫ t

0

k(t− s)e(ν−1)(s)ds,
(6.7)

is derived, i.e., the Picard waveform relaxation operator K is a linear Volterra
convolution operator with kernel k(t). More precisely, since limz→∞K(z) =
0, k(t) ∈ L1(0,∞) if K(z) is bounded and analytic in an open domain con-
taining the closed right-half complex plane, i.e., if all eigenvalues of L+ have
negative real parts, see, e.g., [JSW82, Prop. 2.3].

The spectral radius ρ(K) of this convolution operator K determines
the asymptotic convergence of the corresponding Picard waveform relax-
ation method. It can be investigated in the spaces Lp(0,∞) of Lebesgue-
measurable functions which are p-th power integrable (see Chapter 2).

Theorem 6.3.1. Consider equation (6.1), discretized in space using the
numerical method of lines, and assume all eigenvalues of L+ have negative
real parts. Then, the spectral radius of the Picard waveform relaxation
operator K considered as an operator in Lp(0,∞) with 1 ≤ p ≤ ∞ is given
by

ρ(K) = sup
z∈C̄+

ρ(K(z)),

= sup
ξ∈R

ρ(K(iξ)),

with K(z) as in (6.6).

6.4 Non-Picard Waveform Relaxation

Picard waveform relaxation methods solve a system of DDEs by solving
a sequence of simple systems of ODEs. Standard (that is, non-Picard)
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waveform relaxation methods use simple systems which are still DDEs. For
(6.2) the iteration becomes

u̇(ν)(t)− L+u(ν)(t) + u(ν)(t− τ) = L−u(ν−1)(t), t ∈ [0, tF ]. (6.8)

The Jacobi and Gauss-Seidel variants of which are defined in terms of
their respective splittings given above. The non-Picard waveform relax-
ation methods (6.8) can be analyzed in a similar way as the Picard methods.
Rewriting (6.2) as

u̇(t)− L+u(t) + u(t− τ) = L−u(t), t ∈ [0, tF ],

subtracting this from (6.8) and applying Laplace transforms, results in (6.5)
with the waveform relaxation symbol

K(z) = ((z + e−τz)I − L+)−1L−. (6.9)

An inverse Laplace-transform argument then immediately implies that the
waveform relaxation operator K is a linear Volterra convolution operator
with kernel k(t) (see (6.7)).

In order to be able to determine the spectral radius ρ(K) in the spaces
Lp(0,∞), one has to prove that k(t) ∈ L1(0,∞). From [JSW82, Prop. 2.3],
it follows that it suffices that limz→∞K(z) = 0 and that K(z) is bounded
and analytic in an open domain containing the closed right-half complex
plane. The first condition is easily checked. If we define

Σ = {z + e−τz : z ∈ C̄+},

then the second condition can be written as

Σ ∩ σ(L+) = φ.

This condition always holds if Re(λ) < −1 for all λ ∈ σ(L+). It also holds
if the eigenvalues of L+ are real and negative, as in our model problem, and
τ < π

2 . If there are eigenvalues such that −1 < Re(λ) < 0, then a τ > π
2

can always be found such that λ ∈ Σ. In such cases convergence cannot be
guaranteed. Figure 6.2 illustrates the shape of Σ for different values of τ .

Theorem 6.4.1. Consider equation (6.1), discretized in space using the
numerical method of lines, and assume σ(L+) ∩ Σ = φ. Then, the spectral
radius of the waveform relaxation operator K considered as an operator in
Lp(0,∞) with 1 ≤ p ≤ ∞, is given by

ρ(K) = sup
z∈C̄+

ρ(K(z)),

= sup
ξ∈R

ρ(K(iξ)),

with K(z) as in (6.9).
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Figure 6.2: Image of the rectangle [0, 4] × [−2.5, 2.5] ⊂ C transformed by
z → z + e−τz for different values of τ .
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6.5 Multigrid Waveform Relaxation

The convergence rate of the Jacobi and Gauss-Seidel waveform relaxation
methods, described in the previous sections, depends on the spatial mesh
size. If they converge, the convergence will be very slow except on very
coarse grids. This is to be expected since the same happens for the cor-
responding problems without delay. However, just as in the case without
delay, efficient multigrid methods can be developed based on the simple
waveform relaxation schemes. Below, a two-grid cycle for model problem
(6.2) is stated. A Picard waveform relaxation method is used as a smoother.
Two nested grids are used. The quantities on the coarse grid are denoted
by barred symbols.

Presmoothing. Set v(0) = u(ν−1), and perform ν1 Picard waveform relax-
ation steps: for ν = 1, 2, . . . , ν1, solve

v̇(ν)(t)− L+v(ν)(t) = L−v(ν−1)(t)− v(ν−1)(t− τ), (6.10)

with v(ν)(t) = 0, t ∈ [−τ, 0].

Coarse-grid correction. Compute the defect

d(t) = v̇(ν1)(t)− Lv(ν1)(t) + v(ν1)(t− τ).

Solve the coarse-grid equivalent of the defect equation,

˙̄u(t)− L̄ū(t)− ū(t− τ) = Rd(t), (6.11)

with ū(t) = 0, t ∈ [−τ, 0] and R the restriction operator transferring
fine-grid quantities to coarse-grid ones. Then, interpolate the correc-
tion ū(t) to the fine grid, and correct the current approximation,

w(0)(t) = v(ν1)(t)− Pū(t),

with P the prolongation operator which projects coarse-grid quantities
onto fine-grid ones.

Postsmoothing. Perform ν2 iterations of type (6.10), starting with w(0)(t),
and set u(ν)(t) = w(ν2)(t).

Since (6.11) is formally equal to (6.2) (except for the zero right-hand
side in the latter problem), this two-grid cycle can be applied in a recursive
way to obtain a multigrid cycle on more than two nested grids.

The theoretical analysis of the two-grid waveform relaxation method
can be performed in analogy with the analysis of the (Picard) waveform
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relaxation methods. Rewriting all the steps of the two-grid scheme in error
notation and applying Laplace-transform techniques results in

ẽ(ν)(z) = M(z)ẽ(ν−1)(z),

with the two-grid symbol

M(z) = Sν2(z)C(z)Sν1(z),

C(z) = I − PL̄(z)−1RL(z),

L̄(z) = (z + e−τz)I − L̄,
L(z) = (z + e−τz)I − L,
S(z) = (zI − L+)−1(−e−τzI + L−).

(6.12)

An inverse Laplace-transform argument shows that the two-grid waveform
relaxation operator M is of linear Volterra convolution type, i.e.,

e(ν) =Me(ν−1) =
∫ t

0

m(t− s)e(ν−1)(s)ds.

To determine the spectral radius ρ(M) in the spaces Lp(0,∞), it has to
be shown that m(t) ∈ L1(0,∞). From [JSW82, Prop. 2.3], it follows that to
this end, it suffices that limz→∞M(z) = 0 and that M(z) is bounded and
analytic in an open domain containing the closed right-half of the com-
plex plane. The first condition follows immediately from the fact that
limz→∞ S(z) = 0. On the other hand, M(z) is bounded and analytic in
an open domain containing the closed right-half of the complex plane if
S(z) and C(z) are both bounded and analytic in such a region. This means
that all eigenvalues of L+ must have negative real parts and σ(L̄) ∩ Σ = φ.
The following theorem therefore holds.

Theorem 6.5.1. Consider equation (6.1), discretized in space using the
numerical method of lines, and assume σ(L+) ∩ C̄+ = φ and σ(L̄) ∩ Σ =
φ. The spectral radius of the two-grid waveform relaxation operator M,
considered as an operator in Lp(0,∞) with 1 ≤ p ≤ ∞, is given by

ρ(M) = sup
z∈C̄+

ρ(M(z)), (6.13)

= sup
ξ∈R

ρ(M(iξ)), (6.14)

with M(z) as in (6.12).

Figure 6.3 shows the spectral radius of the two-grid symbol ρ(M(z))
over the imaginary axis for (6.2), with d = 10, a = 1, b = −1, τ = 1,
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Figure 6.3: ρ(M(iξ)) for d = 10, a = 1, b = −1, τ = 1.

M = 32 and using Gauss-Seidel/Picard waveform relaxation as smoother.
The scale of the horizontal axis is not specified since it can easily be shown
that, except for the scale, the result is exactly the same for all parameters
for which aτd−2 = 10−2 and bτ = −1. The delay manifests itself as a wiggle
on top of the curve for the equation without delay (b = 0). Its amplitude
and frequency depend on the choice of parameters.

Instead of a Picard waveform relaxation method, also the standard wave-
form relaxation method can be used as smoother, i.e., (6.10) can be replaced
by

u̇(ν)(t)− L+u(ν)(t) + u(ν)(t− τ) = L−u(ν−1)(t).

Similar results as in Theorem 6.5.1 can be proved for the resulting multigrid
waveform operator M.

Table 6.1 shows the spectral radii computed by (6.14) for a = 1, b = −1,
M = 32 and several values of d and τ .

6.6 Numerical Results

Some numerical results are presented for the multigrid waveform relaxation
method applied to (6.1), discretized using the method of lines. Instead of
solving (6.11) exactly on the coarse grid, the two-grid method is imple-
mented in a recursive manner until a mesh with 1 internal grid point is ob-
tained. The method uses a standard V -cycle with 1 pre- and 1 postsmooth-
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Table 6.1: Values of ρ(M) for a = 1, b = −1, M = 32

τ d Picard non-Picard
1 1 0.1625 0.1624
1 2 0.1626 0.1620
1 5 0.1651 0.1630
2 1 0.1623 0.1625
2 2 0.1627 0.1625
2 5 0.1637 0.1650

Table 6.2: Averaged convergence factors for a = 1, b = −1, M = 32, tF = 50

τ d Picard non-Picard
1 1 0.1374 0.1161
1 2 0.1951 0.1477
1 5 0.2037 0.1797
2 1 0.1372 0.1168
2 2 0.2021 0.1124
2 5 0.1157 0.1089

ing step of Gauss-Seidel/Picard or Gauss-Seidel type, linear interpolation
and full-weighting restriction. Obviously, the continuous-time method has
to be discretized in time in an actual implementation. The effect of this
time discretization on the convergence properties is not considered here.
The backward differentiation formula of order two with time-step 0.1 is
used for all the experiments. Initially all unknowns are set to one.

Table 6.2 reports averaged convergence factors for the parameters a = 1,
b = −1, M = 32, on a time interval with length tF = 50. The averages
are obtained by taking the geometric average of quotient of the L2-norm of
consecutive errors for the last 20 iterations in a total of 40. These factors
correspond roughly to the infinite-interval results of Table 6.1. For large
values of d the convergence becomes slightly more erratic, but the methods
are still efficient.

To show that it is possible to solve more general equations using the
methods discussed here, a multigrid method was implemented to solve a
general diffusion equation with varying coefficients and a term with a con-
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stant delay.

∂u

∂t
=
∂

∂x

(
a
∂u

∂x

)
+
∂

∂y

(
b
∂u

∂y

)
+cu+du(t−τ)+f,

a(x, y, t) = exp(10(x− y) sin(t)),
b(x, y, t) = exp(−10(x− y) cos(πt)),
c(x, y, t) = 2− exp(−t),
d(x, y, t) = 1 + exp(t).

The function f is chosen such that the exact solution is u(x, y, t) = x+y+t.
This is an anisotropic problem since the diffusion coefficients in a certain
point can be very different depending on the direction of diffusion. Standard
multigrid methods do not handle this type of problem well and yield very
slow convergence. The multigrid as smoother (MGS) method, which uses
the same simple smoothers as before, together with an extended hierarchy of
coarse grids, was used here. For more information on this multigrid scheme
we refer to §3.3.4. The multigrid algorithm uses full weighting restriction,
bilinear and linear interpolation, 1 pre- and 1 postsmoothing step. The
smoothing consists of a multigrid semicoarsening step in the x-direction
followed by one in the y-direction both using only 1 presmoothing red-
black Gauss-Seidel step. A hierarchy of 5 × 5 grids is used. A total of 10
iterations was performed. Average convergence factors, taken over the last
5 iterations, are 0.0557 for the Picard as well as the non-Picard smoother.
The PDE is solved to within the spatial discretization error in 4 iterations
(there is no discretization error in time).

6.7 Conclusions

In this chapter, a theoretical Fourier-Laplace framework was set up to de-
rive quantitative convergence estimates of waveform relaxation methods for
semi-discretized DPDEs.

Roughly speaking, a great resemblance with the convergence behavior
of the related methods for PDEs without delay can be observed. That is,
the multigrid waveform relaxation methods exhibit mesh-size independent
convergence behavior.

Although a very simple model problem is used to explain and illustrate
the methods and their analysis, the provided information should allow one
to derive similar results for more complicated problems. Other issues which
one might be interested in are, e.g., the influence of the particular time
discretization method used on the algorithm’s convergence speed, and the
treatment of non-linearities and more general, variable or state-dependent
delays.



Chapter 7

Convergence Analysis
using Functional Calculus

The convergence analysis of waveform relaxation methods traditionally uses
the theory of Volterra convolution equations. More specifically the conver-
gence theory can be based on a theorem of Paley and Wiener that gives a
condition for the solution of a linear Volterra convolution equation to be
bounded. Extensions of this theorem to discrete convolution equations and
vector-valued problems have been described in the literature. In this chap-
ter we show that the same results can be derived by an alternative approach
based on functional calculus. A functional calculus defines what is meant
by a function of an operator. A spectral mapping theorem then relates the
spectrum of the resulting operator to the spectrum of the original opera-
tor. The Dunford-Taylor functional calculus for scalar analytic functions
is extended in this chapter to matrix-valued analytic functions. Using the
corresponding spectral mapping theorem, it is straightforward to analyze
the convergence of a large number of waveform relaxation algorithms. The
theory is applied to the analysis of continuous waveform relaxation and dis-
crete waveform relaxation based on general linear methods, both for initial
value and time periodic systems of ordinary differential equations. A brief
explanation is given of how the theory can be applied in the context of
convergence analysis of multigrid methods.

7.1 Introduction

Consider the linear system

u̇ = Lu+ f,

147
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with u(t), f(t) ∈ Rm and L ∈ Rm×m. As explained in Chapter 2, a matrix
splitting L = L+ + L− results in the waveform relaxation iteration

u̇(ν) = L+u(ν) + L−u(ν−1) + f.

For a given system and splitting, several waveform relaxation variants are
possible depending on the way the time dimension is treated. From a theo-
retical point of view, we have shown that it is interesting to study continuous
waveform relaxation, where the simpler ODEs are solved exactly, on either
a finite or an infinite time interval. In a practical implementation the ODEs
have to be discretized and solved numerically. Different time discretization
schemes lead to different discrete waveform relaxation methods. An Implicit
Euler discretization, for example, results in the following method

u
(ν)
i − u(ν)

i−1

∆t
= L+u

(ν)
i + L−u

(ν−1)
i + fi,

which was analyzed in Chapter 3. The more general case of discretization
with a LMM, IRK method, BVM or GLM was studied in Chapter 4. The
case of spectral discretization in time was considered in Chapter 5.

The convergence analysis of these methods was based on the theory of
Volterra integral equations, as introduced in the seminal paper [MN87a].
There, it is shown that continuous waveform relaxation can be described
by a linear Volterra convolution operator K whose spectral radius ρ(K) de-
termines the convergence of the method. Below we recall the main the-
orem, which characterizes the spectral radius. It can be proved using
the Paley-Wiener theorem that gives a necessary and sufficient condition
for the boundedness of the solution of a linear Volterra convolution equa-
tion [MN87a, LO87, JV96a].

Theorem 7.1.1 (Th. 2.2, [MN87a]). Consider K as a linear operator in
Lp([0,∞],Cm) with 1 ≤ p ≤ ∞, and assume σ(L+) ∩ C̄+ = φ. Then, K is
a bounded operator and

ρ(K) = sup
z∈C̄+

ρ((zIm − L+)−1L−). (7.1)

A framework for the analysis of discrete waveform relaxation was pro-
vided in [MN87b]. The main theorem, which was also the basis of our
analyses in the previous chapters, is restated below. Its proof is based on a
discrete equivalent of the Paley-Wiener theorem [MN87b, LO87, JV96b].

Theorem 7.1.2 (Th. 3.1, [MN87b]). Consider K as a linear operator in
lp(∞,Cm) with 1 ≤ p ≤ ∞, and assume σ(L+) ∩ Σ = φ. Then, K is a
bounded operator and

ρ(K) = sup
z∈Σ

ρ((zIm − L+)−1L−), (7.2)
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where Σ is the complement of the interior of the stability region of the time
discretization scheme scaled by 1

∆t .

The formulae for the spectral radii of continuous and discrete waveform
relaxation operators are clearly very similar. This chapter suggests an ap-
proach, based on functional calculus, that unifies the convergence analyses
of the different waveform relaxation methods. The approach can be sum-
marized by the general formula

ρ(F (T )) = sup
z∈σ(T )

ρ(F (z)), (7.3)

where T is any closed linear operator (with non-empty resolvent set) and F
is a matrix-valued function analytic in a neighborhood of σ(T ), the spectrum
of T (see Corollary 7.2.21). Taking T = d

dt and F (z) = (zIm − L+)−1L−,
for example, gives the formula for continuous waveform relaxation, as will
be shown in §7.3.

The functional calculus for scalar functions is well known. That is,
the definition of a scalar function of a matrix (or operator) is classic and
well understood. It is shown here that the convergence of waveform re-
laxation methods can be analyzed by using a straightforward extension to
matrix-valued functions. The approach based on operator theory can be
interpreted as a generalization of the analysis of iterative methods for ma-
trices to the analysis of the corresponding methods for matrices of operators
(or equivalently matrix-valued operators). In §7.2 the operator calculus is
first introduced for matrices, then for bounded linear operators and finally
for closed linear operators. Section 7.3 shows how continuous and discrete
waveform relaxation for initial value problems on finite and infinite time
intervals and for time-periodic problems fit into the general framework. For
the discrete case, time discretization based on general linear methods is con-
sidered. Linear multistep, implicit Runge-Kutta and block boundary value
methods can be derived as special cases. Section 7.5 outlines how the the-
ory can be used for the two-grid convergence analysis of multigrid methods.
Section 7.6 provides some concluding remarks.

7.2 Spectral Mapping Theorems for Matrix-
Valued Functions of Operators

The theory of this section is introduced first for matrices, then for bounded
linear operators and finally for closed (possibly unbounded) linear operators.
Each class of operators is a generalization of the next. In principle, it
would suffice to consider only closed linear operators. However, for ease
of understanding and clarity of exposition the step by step approach is
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preferred. For each of the three cases, a definition is given for what is
meant by f(T ), a function of an operator. A set of rules is provided for
calculating with such functions. Using this so-called functional calculus,
the spectrum of f(T ) is characterized.

The theory for scalar functions is well developed. Detailed descriptions of
the Dunford-Taylor functional calculus for scalar functions can be found in
functional analysis monographs such as [DS57, Tay58, HP74, Rud73, Vas82]
and textbooks such as [Sch71, Lax02]. See [Haa05] for a recent state of the
art. Here, extensions to matrix-valued functions are given.

7.2.1 Functional Calculus for Functions of Matrices

The functional calculus for functions of matrices is a special case of the
general theory since matrices can be considered as representations of linear
operators in finite dimensional vector spaces. Considering this case sepa-
rately is nevertheless useful because the results can be obtained using only
linear algebra (see §2.2). We start by recalling some standard results from
the theory of scalar functions of matrices.

Scalar Functions of Matrices

There are many ways to define a function of a matrix. Most definitions
turn out to be equivalent in practice. We use here a definition based on line
integration in the complex plane. A similar formulation will be used as the
starting point for defining functions of more general operators. For more
details on functions of matrices we refer to [HJ94, Ch. 6], [GVL96, Ch. 11]
and [Rin55].

Definition 7.2.1. The family of scalar functions f : C → C, analytic in
some neighborhood of σ(T ) is denoted by F(T ).

Definition 7.2.2. Given a matrix T ∈ Cn×n and a function f ∈ F(T ), the
matrix f(T ) ∈ Cn×n is defined by

f(T ) =
1

2πi

∮
f(z)(zIX − T )−1dz. (7.4)

All line integration is over a contour that is appropriately chosen in
relation to the spectrum σ(T ) (for more details see [DS57, Tay58]). Note
that (7.4) can be interpreted as an extension of the classical Cauchy formula
for the value of an analytic function f at the point z0

f(z0) =
1

2πi

∮
f(z)
z − z0

dz.

A characterization of f(T ) derived from Definition 7.2.2 is given by the
following theorem [GVL96, Th. 11.1.1], [HJ94, Def. 6.2.4].
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Theorem 7.2.3. Let T = V diag(J1, . . . , Jq)V −1 be the Jordan decomposi-
tion of T ∈ Cn×n with Jordan blocks Ji ∈ Cni×ni ,

Ji =


λi 1 · · · 0

0
. . . . . .

...
...

. . . . . . 1
0 . . . 0 λi

 .

If f ∈ F(T ), then

f(T ) = V diag(f(J1), . . . , f(Jq))V −1

with

f(Ji) =


f(λi) f (1)(λi) · · · f(ni−1)(λi)

(ni−1)!

0
. . . . . .

...
...

. . . . . . f (1)(λi)
0 . . . 0 f(λi)

 ,

where f (k) denotes the k-th derivative of f .

The following rules constitute a so-called functional calculus for func-
tions of matrices. They can be proved using Definition 7.2.2 or Theo-
rem 7.2.3. These rules are also a special case of the rules for bounded
linear operators.

Theorem 7.2.4. If f, g ∈ F(T ) and α, β ∈ C, then

� αf + βg ∈ F(T ) and αf(T ) + βg(T ) = (αf + βg)(T ) (linearity),

� f · g ∈ F(T ) and f(T ) · g(T ) = (f · g)(T ) (multiplication),

� if f has a power series expansion f(z) =
∑∞

k=0 αkz
k, valid in a neigh-

borhood of σ(T ), then f(T ) =
∑∞

k=0 αkT
k (power series).

If f ∈ F(T ), g ∈ F(f(T )) and h(z) = g(f(z)), then

� h ∈ F(T ) and h(T ) = g(f(T )) (function composition).

The following spectral mapping theorem is a direct consequence of The-
orem 7.2.3.

Theorem 7.2.5. Let T be a complex square matrix. If f ∈ F(T ), then

σ(f(T )) = {f(z), z ∈ σ(T )} =: f(σ(T )).
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Matrix-Valued Functions of Matrices

Definition 7.2.6. The family of all matrix-valued functions F : C →
Cm×m, analytic in some neighborhood of σ(T ) is denoted by Fm×m(T ).

Note that a matrix-valued analytic function is equivalent to a matrix of
analytic functions. Matrix-valued functions of matrices can be defined by
applying Definition 7.2.2 componentwise.

Definition 7.2.7. Given a matrix T ∈ Cn×n and a function F ∈ Fm×m(T ),
the matrix F (T ) ∈ Cmn×mn is defined by

F (T ) =
1

2πi

∮
F (z)⊗ (zIX − T )−1dz.

The expression A ⊗ B denotes the Kronecker or tensor product. The
matrix A⊗B is obtained by replacing each element aij in A with the matrix
aijB. If A ∈ Cm×m and B ∈ Cn×n then A⊗B ∈ Cmn×mn. For more details
on the Kronecker product see [Gra81], [MN88] and [HJ94, Ch.4].

From the functional calculus for scalar functions, a functional calculus for
matrix-valued functions can be derived. For example, if F, G ∈ Fm×m(T ),
then F ·G ∈ Fm×m(T ) and F (T ) ·G(T ) = (F ·G)(T ).

By applying Theorem 7.2.3 componentwise, it can be found that

F (T ) = (Im ⊗ V ) diag(F (J1), . . . , F (Jq))(Im ⊗ V −1) (7.5)

Since diag(F (J1), . . . , F (Jq)) is block diagonal, the spectrum of F (T ) is
given by the union of the spectra of the diagonal blocks F (Ji). These
blocks themselves contain triangular blocks with constant diagonals (or,
equivalently, they are block triangular with a constant block diagonal if all
the tensor products are reversed). This observation leads to the following
generalization of the spectral mapping theorem.

Theorem 7.2.8. Let T be a complex square matrix. If F ∈ Fm×m(T ),
then

σ(F (T )) =
⋃

z∈σ(T )

σ(F (z)) =: σ(F (σ(T ))).

The following corollary follows immediately.

Corollary 7.2.9. Let T be a complex square matrix. If F ∈ Fm×m(T ),
then

ρ(F (T )) = max
z∈σ(T )

ρ(F (z))
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7.2.2 Functional Calculus for Functions of Bounded Lin-
ear Operators

In this and the following section the terminology and notation from §2.4
is used. We recall that the spectrum σ(T ) of a bounded linear operator
contains all λ ∈ C for which (λIX−T ) does not have a bounded everywhere
defined inverse. The spectrum of a bounded linear operator is a closed and
bounded set.

Scalar Functions of Bounded Linear Operators

The definitions from §7.2.1 can still be used when T is a bounded linear
operator. The formulation of the theorems is analogous as well. Proofs for
the functional calculus and spectral mapping theorems for scalar functions of
bounded linear operators can be found in [DS57, Tay58]. Only the spectral
mapping theorems are stated here.

Theorem 7.2.10. Let T be a bounded linear operator. If f ∈ F(T ), then

σ(f(T )) = f(σ(T )).

Matrix-Valued Functions of Bounded Linear Operators

It is straightforward to extend the functional calculus for scalar functions
to matrix-valued functions. Using the resulting functional calculus, the
following generalization of Theorem 7.2.8 to bounded linear operators can
be given.

Theorem 7.2.11. Let T be a bounded linear operator. If F ∈ Fm×m(T ),
then

σ(F (T )) = σ(F (σ(T ))). (7.6)

Proof. The proof is patterned after the proof of Theorem 7.2.10 [DS57,
Th. 11, p. 569].

First, it is shown that σ(F (T )) ⊃ σ(F (σ(T ))). Let λ ∈ σ(T ) and
µ ∈ σ(F (λ)). Take v a normalized eigenvector of the matrix F (λ) for
the eigenvalue µ, i.e., F (λ)v = µv and v∗v = 1. Define the matrix-valued
function G in the domain of definition of F by

G(ξ) = (F (λ)− F (ξ))/(λ− ξ).

By the matrix-valued functional calculus it follows that

G(T )(Im ⊗ (λIX − T )) = F (λ)⊗ IX − F (T )
= −(µIm − F (λ))⊗ IX + µIm ⊗ IX − F (T ).
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Multiplying from the right by v ⊗ IX and using (µIm − F (λ))v = 0 results
in

G(T )(v ⊗ IX)(λIX − T ) = (µIm ⊗ IX − F (T ))(v ⊗ IX). (7.7)

Assume µ /∈ σ(F (T )), then µIm ⊗ IX − F (T ) has a bounded everywhere
defined inverse, which we denote by A. Multiplying (7.7) from the left by
(v∗ ⊗ IX)A leads to

(v∗ ⊗ IX)AG(T )(v ⊗ IX)(λIX − T ) = IX .

Hence, (v∗ ⊗ IX)AG(T )(v ⊗ IX) would be a bounded everywhere defined
inverse of λIX − T . This contradicts the assumption that λ ∈ σ(T ) and
therefore µ ∈ σ(F (T )).

Next, it is shown that σ(F (T )) ⊂ σ(F (σ(T ))). Let µ ∈ σ(F (T )) and
suppose that µ /∈ σ(F (σ(T ))). Then the function

H(ξ) = (F (ξ)− µIm)−1

is analytic in the same neighborhood of σ(T ) as F . By the matrix-valued
functional calculus it follows that

H(T )(F (T )− µIm ⊗ IX) = Im ⊗ IX .

Hence H(T ) is a bounded everywhere defined inverse of F (T ) − µIm ⊗ IX
which contradicts the assumption that µ ∈ σ(F (T )).

The following analogue of Corollary 7.2.9 holds.

Corollary 7.2.12. Let T be a bounded linear operator. If F ∈ Fm×m(T ),
then

ρ(F (T )) = max
z∈σ(T )

ρ(F (z))

7.2.3 Functional Calculus for Functions of Closed Lin-
ear Operators

Terminology and notation are again as in §2.4. We recall that a closed linear
operator T with D(T ) = X is bounded. The spectrum of a closed linear
operator is closed, but not necessarily bounded. A definition of a function
of an unbounded closed operator can be given by taking into account the
behavior of the function at infinity. Operators whose spectrum is the whole
complex plane have to be explicitly excluded.
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Scalar Functions of Closed Linear Operators

Definition 7.2.13. The family of all scalar functions f : C → C, analytic
in some neighborhood of σ(T ) and at infinity is denoted by F∞(T ).

The definition of a scalar function of a closed (possibly unbounded)
linear operator can be based on the definition for bounded linear operators
(see [DS57]). Let Φ be the homeomorphism of the Riemann sphere to itself
defined by

Φ(λ) = (λ− α)−1, Φ(∞) = 0, Φ(α) =∞. (7.8)

Definition 7.2.14. Given a closed linear operator T with a non-empty
resolvent set, let α be an element of the resolvent set and A = (T − αI)−1

a bounded linear operator. For a function f ∈ F∞(T ), the linear operator
f(T ) is defined by f(T ) = φ(A) where the function φ ∈ F(A) is given by
φ(z) = f(Φ−1(z)).

The following theorem is derived in [DS57].

Theorem 7.2.15. Given a closed linear operator T and a function f ∈
F∞(T ), the linear operator f(T ), defined in Definition 7.2.14, is given by

f(T ) = f(∞)IX +
1

2πi

∮
f(z)(zIX − T )−1dz. (7.9)

It is therefore independent of the choice of α from the resolvent set of T .

In [Tay58] the equality (7.9) is taken as the definition for f(T ).
The functional calculus is again analogous to the case of scalar functions

of matrices and not repeated here.

Definition 7.2.16. The extended spectrum is defined as σ∞(T ) = σ(T ) ∪
{∞}.

The following spectral mapping theorem for scalar functions of closed
linear operators follows from Theorem 7.2.10 by Definition 7.2.14 and the
fact that Φ is a one-to-one mapping between σ∞(T ) and σ(A) [DS57]. For
a different proof see [Tay58].

Theorem 7.2.17. Let T be a closed linear operator. If f ∈ F∞(T ), then

σ(f(T )) = f(σ∞(T )).

Matrix-Valued Functions of Closed Linear Operators

Definition 7.2.18. The family of all matrix-valued functions F : C →
Cm×m, analytic in some neighborhood of σ(T ) and at infinity is denoted by
Fm×m
∞ (T ).
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The construction used to derive scalar functions of closed linear opera-
tors from the case of bounded linear operators can also be used for matrix-
valued functions. Alternatively Theorem 7.2.15 can be applied component-
wise.

Definition 7.2.19. Given a closed linear operator T and a function F ∈
Fm×m
∞ (T ), the linear operator F (T ) is defined by

F (T ) = F (∞)⊗ IX +
1

2πi

∮
F (z)⊗ (zIX − T )−1dz.

A spectral mapping theorem for matrix-valued functions of closed linear
operators can be derived from the one for bounded linear operators in the
same way as for scalar functions.

Theorem 7.2.20. Let T be a closed linear operator. If F ∈ Fm×m
∞ (T ),

then
σ(F (T )) = σ(F (σ∞(T ))). (7.10)

The following analogue of Corollaries 7.2.9 and 7.2.12 holds.

Corollary 7.2.21. Let T be a closed linear operator. If F ∈ Fm×m
∞ (T ),

then
ρ(F (T )) = max

z∈σ∞(T )
ρ(F (z))

This formula is equivalent to (7.3).

7.3 Application of the Functional Calculus to
Waveform Relaxation

In this section several waveform relaxation methods are described and their
convergence is analyzed using the functional calculi of §7.2. The results
derived with the theory based on Volterra equations (see Chapters 2 and
4 and [MN87a, LO87, VP93, JV96a, JV96b, VlV05b]) are reproduced in a
much more general setting.

7.3.1 An Abstract Setting for the Convergence Analy-
sis of Waveform Relaxation

The following general set of equations is considered

(Im ⊗ T )u = (L⊗ IX)u+ f, (7.11)

with u, f ∈ Xm, X a Banach space, T an operator in X, L ∈ Cm×m and IX
and Im identity operators in X and Cm. Typically, the operator T will be
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the time derivative operator d
dt or a discrete equivalent, although the results

hold for any closed linear operator. A splitting of the form L = L+ + L−

results in the generalized waveform relaxation method

(Im ⊗ T )u(ν) = (L+ ⊗ IX)u(ν) + (L− ⊗ IX)u(ν−1) + f, (7.12)

For the classical Jacobi (L+: diagonal of L) or Gauss-Seidel (L+: lower
triangular part of L) splittings, one iteration requires the solution of m
decoupled equations. By considering the corresponding iteration for the
errors e(ν) = u(ν) − u

(Im ⊗ T )e(ν) = (L+ ⊗ IX)e(ν) + (L− ⊗ IX)e(ν−1), (7.13)

it is clear that the convergence of the waveform relaxation method can be
studied using an analysis of the spectrum of the iteration operator

F (T ) = (Im ⊗ T − L+ ⊗ IX)−1(L− ⊗ IX). (7.14)

The matrix-valued function F , defined by

F (z) = (zI − L+)−1L− (7.15)

is analytic in C \ σ(L+) and at infinity. It is therefore always assumed that

σ(L+) ∩ σ(T ) = φ. (7.16)

Equation (7.11) is considered for simplicity. The more general results from
[JV96a, JV96b] for

(M ⊗ T )u = (L⊗ IX)u+ f, (7.17)

where Im in (7.11) is replaced by a non-singular matrix M can be obtained
by taking

F (z) = (M+z − L+)−1(−M−z + L−) where M = M+ +M−

and assuming σ(M+−1L+) ∩ σ(T ) = φ.
A whole range of waveform relaxation methods can now be analyzed by

defining an appropriate ‘time derivative’ operator T . For each waveform
relaxation method discussed in the following sections, the Banach space X,
the operator T , its domain D(T ) and spectrum σ(T ) or extended spectrum
σ∞(T ) are specified. The spectrum and spectral radius of the waveform
relaxation operator F (T ) can then be derived by using the theory of §7.2
as summarized by the formulae

σ(F (T )) = σ(F (σ∞(T ))) and ρ(F (T )) = max
z∈σ∞(T )

ρ(F (z)). (7.18)

In some cases T itself can be obtained as a function of an even simpler
operator.



158 CHAPTER 7. FUNCTIONAL CALCULUS

7.3.2 Continuous Waveform Relaxation

Continuous waveform relaxation is obtained by defining Tx := ẋ, in which
case (7.11) is just the system of ordinary differential equations

u̇ = Lu+ f,

for functions u and f defined on [0, tF ]. For initial value problems the extra
condition u(0) = u0 is added and tF can be infinite. For periodic problems
the extra condition is u(0) = u(tF ).

The abstract iteration (7.12) takes the form

u̇(ν) = L+u(ν) + L−u(ν−1) + f,

together with u(ν)(0) = u0 or u(ν)(0) = u(ν)(tF ). The error iteration (7.13)
becomes

ė(ν) = L+e(ν) + L−e(ν−1),

together with e(ν)(0) = 0 or e(ν)(0) = e(ν)(tF ).

Functions on Finite Time Intervals

Consider the Banach space X = C[0, tF ] of continuous functions on the
interval [0, tF ] with norm ‖x‖ = maxt∈[0,tF ] ‖x(t)‖. Let T be the operator
defined by (Tx)(t) = ẋ(t) with domain

D(T ) = {x : ẋ ∈ C[0, tF ], x(0) = 0}.

T is a closed unbounded linear operator and its spectrum is empty (σ(T ) =
φ). Its extended spectrum is therefore given by

σ∞(T ) = {∞},

see, for example, [DS57, p. 604], [Tay58, p. 297] and [Tay58, p. 291].
Together with (7.14)-(7.18) the classical result ρ(F (T )) = 0 is recovered
[MN87a].

Functions on Infinite Time Intervals

Consider the Banach space X = Lp([0,∞],C), 1 ≤ p ≤ ∞ and let T be the
operator defined by (Tx)(t) = ẋ(t) with domain

D(T ) = {x : x is absolutely continuous on [0, a] for any a > 0,
ẋ ∈ X,x(0) = 0}.
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T is a closed unbounded linear operator. The equation λx(t)− ẋ(t) = y(t),
together with x(0) = 0, has a bounded solution

x(t) = −
∫ t

0

eλ(t−s)y(s)ds

for every y ∈ X whenever <(λ) < 0. Therefore the operator (λIX − T )−1

is bounded and everywhere defined when <(λ) < 0 and, since the spectrum
is closed, this gives

σ(T ) = C̄+, σ∞(T ) = C̄+ ∪ {∞}.

Together with (7.14)-(7.18) this leads to the classical result for the con-
vergence of waveform relaxation on infinite time intervals given in Theo-
rem 2.5.5.

Periodic Functions

Consider the Banach space X = C[0, 1] and let T be the operator defined
by (Tx)(t) = ẋ(t) with domain

D(T ) = {x : ẋ ∈ C[0, 1], x(0) = x(1)}.

T is a closed unbounded linear operator. The equation λx(t)− ẋ(t) = y(t),
together with x(0) = x(1), has a bounded solution

x(t) = −
∫ t

0

eλ(t−s)y(s)ds+
eλ

eλ − 1

∫ 1

0

eλ(t−s)y(s)ds

for every y ∈ X whenever λ /∈ 2πiZ and thus

σ(T ) = 2πiZ, σ∞(T ) = 2πiZ ∪ {∞},

from which the convergence results for time-periodic waveform relaxation
in [VP93] follow. For this case see [DS57, p. 604]. Similar results can be
obtained for the Banach spaces X = Lp(−π, π), 1 ≤ p ≤ ∞ on the unit
circle [DS57, p. 605], [Tay58, p. 176].

7.3.3 Discrete Waveform Relaxation using General Lin-
ear Methods

In Chapters 2, 4 and 5 the convergence of discrete waveform relaxation using
several time discretization schemes was analyzed. For discrete waveform
relaxation, the operator T can be defined by discretizing the equation ẋ =
Tx using one of these schemes. In this section the theory is applied for
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time discretization based on general linear methods (GLM) [But03, HW96].
The well known linear multistep methods (LMM) and implicit Runge-Kutta
(IRK) methods [Bur95, But03, HW96] and also the block boundary value
methods (BBVM) [BT98, IM98, IM99] belong to this class of methods.
Boundary value methods (BVM) [BT98] are another generalization of linear
multistep methods. The spectral properties of discrete waveform relaxation
using boundary value methods can be derived in the same way as for GLMs
by using the results in [BT98, IMT02, BS99].

There are several ways to formulate GLMs for an ODE of the form
ẋ(t) = f(t, x(t)) (see [But03]). We choose to use the following equations
(see (4.8) and (4.9))

x̃i = Cxi−1 + ∆tAf(t̃i, x̃i), (7.19)

xi = Dxi−1 + ∆tBf(t̃i, x̃i), (7.20)

with A ∈ Rs×s, B ∈ Rr×s, C ∈ Rs×r, D ∈ Rr×r, t̃i ∈ Rs, x̃i ∈ Rs, xi ∈ Rr

and f : Rs × Rs → Rs. This formulation highlights the analogy with IRK
methods for which r = 1. The s stage values x̃i are typically approximations
of x(t) for some t within the current time step. The r values xi can contain,
for example, approximations of x(t), brought forward from previous time
steps or scaled approximations of derivatives of x(t). In order to have a
stable method, the matrix D has to be power bounded. Further conditions
are needed to ensure that the method is consistent. The matrices C and D
are typically chosen such that all rows sum to one and D is of rank one.

Finite Sequences

The discrete equivalent of ẋ = Tx is found by using (7.19)-(7.20) which
results in

x̃i = Cxi−1 + ∆tA(T x̃)i, (7.21)
xi = Dxi−1 + ∆tB(T x̃)i. (7.22)

These equations define T as an operator in the space of sequences of stage
values Cns. Using the backward shift operator S ∈ Cn×n, given by (Sx)1 =
0, (Sx)i = xi−1, 1 < i ≤ n or

S =


0

1
. . .
. . . . . .

1 0

 (7.23)
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and taking into account the initial condition x0 = 0 the set of equa-
tions (7.21) and (7.22) can also be written as

x̃ = (C ⊗ S)x+ ∆t(A⊗ IX)T x̃, (7.24)
x = (D ⊗ S)x+ ∆t(B ⊗ IX)T x̃. (7.25)

By eliminating x and using the matrix-valued functional calculus, it can be
seen that T = G(S) with

G(z) =
1

∆t
(A+ zC(Ir − zD)−1B)−1. (7.26)

Since the spectrum of S is {0}, it follows from the spectral mapping theorem
for matrix-valued functions of matrices that

σ(T ) = σ(G(σ(S))) = σ

(
1

∆t
A−1

)
.

Together with (7.14)-(7.18) the results in §4.4 for the convergence analysis
of discrete waveform relaxation on finite intervals are recovered.

Infinite Sequences

The same approach as for finite sequences allows T to be defined as an
operator in the space of infinite sequences of stage values lp(∞,Cs). The
backward shift operator in lp(∞,Cs) is defined by (Sx)1 = 0, (Sx)i = xi−1,
i > 1 or

S =


0

1
. . .
. . .

 . (7.27)

The spectrum of S is derived by considering the recurrence relation λxi −
xi−1 = yi with x0 = 0. Its solution is xi =

∑i
j=1 λ

j−i−1yj , i ≥ 1. If
y ∈ lp(∞,Cs), then x ∈ lp(∞,Cs) for |λ| > 1. Since the spectrum is closed
this gives

σ(S) = {λ ∈ C : |λ| ≤ 1}.

(See also [Tay58, p. 266]). For more information about the spectral prop-
erties of Toeplitz operators such as S see [BS99, BT98]. Using the spectral
mapping theorem for matrix-valued functions of bounded linear operators,
one arrives at

σ(T ) =
1

∆t

⋃
|z|≤1

σ
(
(A+ zC(Ir − zD)−1B)−1

)
.
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It is shown in §4.5.1 that this is the complement of the interior of the
stability domain of the GLM as defined in [But03, HW96], scaled by 1

∆t . A
similar result was originally derived for the special case of linear multistep
methods in [MN87b]. In general, the interior of the stability region of a
time discretization method corresponds to the resolvent set of the discrete
time derivative operator in lp(∞). Combining the expression for σ(T ) with
(7.14)-(7.18) recovers the results in §4.5.2 for the convergence analysis of
discrete waveform relaxation on infinite intervals.

Remark 7.3.1. Certain GLMs lead to a function G that has poles on the
unit circle. The time derivative operator T for such methods is unbounded.
Its spectrum can be derived directly or by using an extended functional
calculus [Haa05]. Alternatively, the expression for ρ(F (T )) can be obtained
as

sup
z∈σ(S)

ρ(F (G(z))),

i.e., by considering the function F (G(z)) which is again analytic on the
closed unit disc.

Periodic Sequences

For time-periodic problems discretized by GLMs the time derivative oper-
ator T in Csn can be formulated as a function of the circulant backward
shift matrix

P =


0 · · · 0 1

1
. . . 0
. . . . . .

...
1 0

 , (7.28)

with spectrum σ(P ) = {e
2πij

n , j = 0, . . . , n − 1}. Using the matrix-valued
function (7.26) the operator T is given by T = G(P ). The corresponding
spectrum is

σ(T ) =
1

∆t

⋃
σ(P )

σ
(
(A+ zC(Ir − zD)−1B)−1

)
.

Together with (7.14)-(7.18) this results in an expression for the convergence
rate of discrete waveform relaxation for time-periodic problems (for the case
of linear multistep methods see Chapter 2 or [VP93]).
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7.4 Tensor Products of Operators

For matrix-valued functions of the form

F (z) = (zI − L+)−1L−, (7.29)

a proof of the spectral mapping theorem can be given using the fact that

σ(A⊗ I + I ⊗B) = σ(A) + σ(B) := {λA + λB : λA ∈ σ(A), λB ∈ σ(B)}

for A and B bounded or closed linear operators. This is a special case of

σ(g(A⊗ I, I ⊗B)) = g(σ(A), σ(B))

where g is a polynomial (or a certain type of rational function with appro-
priate restrictions on σ(A) and σ(B)) [BP66, Sch69, DS70, RS73, Ich78a,
Ich78b].

Assume σ(T ) ∩ σ(L+) = φ, then the following equivalences hold

µ ∈ σ((T ⊗ Im − IX ⊗ L+)−1(IX ⊗ L−))

0 ∈ σ(µI − (T ⊗ Im − IX ⊗ L+)−1(IX ⊗ L−))
0 ∈ σ(µ(T ⊗ Im − IX ⊗ L+)− (IX ⊗ L−))
0 ∈ σ(µT ⊗ Im − IX ⊗ (µL+ + L−))
0 ∈ σ(µT )− σ(µL+ + L−)
∃z ∈ σ(T ), w ∈ σ(µL+ + L−) : µz − w = 0
∃z ∈ σ(T ) : µz ∈ σ(µL+ + L−)
∃z ∈ σ(T ) : 0 ∈ σ(µzIm − µL+ − L−)

∃z ∈ σ(T ) : 0 ∈ σ(µIm − (zIm − L+)−1L−)

∃z ∈ σ(T ) : µ ∈ σ((zIm − L+)−1L−).

This can be summarized as

σ((T ⊗ Im− IX ⊗L+)−1(IX ⊗L−)) = {µ ∈ σ((zIm−L+)−1L−), z ∈ σ(T )}.

This method also extends to the more general case

F (z) = (zM+ − L+)−1(−zM− + L−). (7.30)

The proof presented here is only valid for rational functions of the
form (7.29) or (7.30), as opposed to general analytic functions. However, the
function F can be operator-valued instead of just matrix-valued. This sug-
gests that it may be possible to extend the theory of §7.2 to operator-valued
analytic functions.
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7.5 Two-Grid Fourier Analysis

The functional calculus also provides an elegant way to perform the two-grid
analysis presented in Chapter 3. We demonstrate this for the coarse grid
correction part of a two-grid iteration applied to the one-dimensional Pois-
son equation. The analysis is based completely on simple shift matrices or
operators and there is no need to consider Fourier modes or eigenfunctions.

As for the analysis in Chapter 3 it is assumed here that the problem
is periodic. The number of fine grid points nx is even and the number of
points on the coarse grid is nx = nx/2. We split the even and odd points
and write the vector of unknown values as

u =
[
u0 u2 · · · unx−2 u1 u3 · · · unx−1

]T
.

The matrix P ∈ Cnx×nx is the operator that periodically shifts a sequence
as follows (see also (7.28))

(u0, u1, . . . , unx−2, unx−1)→ (unx−1, u0, u1, . . . , unx−2).

Using this operator, the coarse grid correction operator for the one-dimen-
sional Poisson equation (see 2.6 and Chapter 3) can be written as

K =
[

I
1
2 (I + P−1)

]
n−2

x

[
P−1 − 2I + P

]−1

[
1
2I

1
4 (I + P )

]
n2

x

[
−2I I + P
I + P −2I

]
.

Define the matrix-valued function K : C→ C2×2 as

K(w) =
[

1
1
2 (1 + w−1)

]
n−2

x

[
w−1 − 2 + w

]−1

[
1
2

1
4 (1 + w)

]
n2

x

[
−2 1 + w

1 + w −2

]
.

From the functional calculus for matrices it follows that the coarse grid
correction operator K is obtained by plugging the periodic shift operator
P into the function K(w). Other stencils, smoothers and the whole two-
grid iteration can be handled in the same way. The spectrum and spectral
radius of the two-grid iteration operator M can be found using the spectral
mapping theorem as

σ(M) =
⋃

w∈σ(P )

σ(M(z)) and ρ(M) = max
w∈σ(P )

ρ(M(z)),
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where M : C→ C2×2 on the right hand side is a matrix-valued function of
the form M(z) = S(z)ν2K(z)S(z)ν1 .

The equivalent of a local Fourier mode analysis, where infinite grids are
used, is obtained by plugging in the infinite shift operator S. This operator
is defined in the space of doubly-infinite sequences lp(Z,C). The spectrum
of this Laurent operator S is the unit circle.

The two-dimensional case can easily be handled using tensor products.
The grid functions are split into even-even, odd-odd, odd-even and even-
odd. This results in matrix-valued functions of two complex parameters
with exactly the same structure as the symbols in the Fourier analysis of
Chapter 3. The whole analysis of two-grid method for time-dependent prob-
lems can now be formulated using a single four by four matrix-valued an-
alytic function of three complex parameters. The iteration operator is ob-
tained by plugging in the three appropriate shift operators. The spectrum
is found as

σ(M) =
⋃

(wt,wx,wy)∈Σt×Σx×Σy

σ(M(wt, wx, wy)).

If we consider discrete waveform relaxation on infinite time intervals and
infinite spatial grids (local Fourier analysis), then Σt is the closed unit disc
and Σx and Σy are the unit circle. Because of a maximum principle the
maximum of ρ(M(wt, wx, wy)) is found on the boundary and therefore

ρ(M) = max
(wt,wx,wy)∈S3

ρ(M(wt, wx, wy)),

where S is the unit circle {w ∈ C : |w| = 1}.

7.6 Conclusions

A general framework for the analysis of waveform relaxation methods based
on the Dunford-Taylor functional calculus was described. To do this, the
theory of scalar functions of operators had to be extended to matrix-valued
functions of operators. When applied to waveform relaxation for initial value
problems, the results from the theory based on Volterra convolution oper-
ators are recovered. The theory presented here, however, is more general.
For a given matrix splitting, a waveform relaxation method can be defined
and analyzed for every closed linear operator. The theory also allowed an
elegant formulation of the two-grid convergence analysis of multigrid meth-
ods.
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Chapter 8

Concluding Remarks

In §8.1 I briefly discuss the codes I used for the experiments in this thesis as
well as related implementations that were not mentioned in the rest of this
thesis. Section 8.2 provides a summary of the previous chapters together
with some conclusions. In §8.3 I suggest some topics that merit further
investigation.

8.1 Implementation Aspects

The first two sections consider the codes used for the experiments in Chap-
ters 2 to 6. In §8.1.1 the codes used for the numerical experiments are
discussed. The codes used for the convergence analysis are discussed in
§8.1.2. The last two sections consider implementations that use some of
the ideas presented in this thesis. Section 8.1.3 discusses the implementa-
tion of a multigrid method for the package GAMD, a state-of-the-art ODE
solver based on BVMs with features such as variable order and variable step
size. Section 8.1.4 mentions research on combining IRK methods with finite
element discretizations in space.

8.1.1 Multigrid Waveform Relaxation Code

The numerical experiments in Chapter 3 were done using a code written
in C++, without any additional libraries. This code implements multigrid
waveform relaxation with point and line relaxation, standard coarsening,
semicoarsening and multiple semicoarsening for constant and space and
time dependent 5- and 9-point stencils. Only BDF time discretization is
available. Preliminary support for delay PDEs is also implemented in this
code. Because of the compiled nature of the language and the fact that

167
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it is relatively low-level, it was quite cumbersome to change the code and
experiment with new ideas.

To make experimentation easier, I decided to make a new program using
Python, a higher level language [vR]. It is in general less verbose than
C++ and, in my opinion, more readable. Expressing the same algorithm
in Python usually requires less typing than in C++. The C++ code for
our specific application could be made more concise by using a library for
working with multidimensional arrays such as Blitz++ [Vel98]. Some early
experiments showed that the resulting code is very efficient, but also that
development is much slower due to long compilation times.

Reimplementation is never an easy choice. There is a benefit to starting
from scratch with the experience gained from a previous implementation.
On the other hand, time spent reimplementing could have been spent on
adding new features to the existing code. Furthermore, there might be a
significant cost involved in mastering a new language. Using a different
programming language in no way guarantees that the new implementation
will be better. I found, however, that in this case it has been worth taking
the risk of writing a new implementation.

High level languages such as Python often exchange efficiency of code
for efficiency of coding. If necessary one can always rewrite a part of the
program that is a bottleneck in a lower level language such as C or Fortran
and integrate this in the original code. However, the resulting code would
usually be less flexible, less portable and harder to maintain. Because good
extensions, such as linear algebra routines, are available for the important
subtasks of our problem, it was never deemed necessary to write low-level
code.

Languages such as Python are very well suited for rapid prototyping.
This is an important advantage when doing research. It should be easy
to try out a new idea. Development proceeds according to an edit-test
cycle instead of an edit-compile-test cycle. For a language with an explicit
compilation step, separate configuration files that are read at run time allow
experimenting with parameters without the need for recompilation. Often
the configuration file is extended to a script, commands are added and in
the end a whole new, ad-hoc scripting language could emerge. To prevent
this, it is better to use a well designed scripting language to begin with.
When using a language that does not require a separate compilation step,
the program can be the configuration file. This makes the scope of possible
experimentation much larger. The whole language can easily be used to
conveniently set up experiments.

An additional advantage of Python is the availability of many libraries
and specifically many packages for scientific computing. The Numeric pack-
age [ADH+01] was used to handle multidimensional arrays (e.g., four di-
mensions x, y, t and the stages for IRK). The Numeric extension provides
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a convenient syntax to work with arrays as well as a wide range of useful
functions. It is written in C for efficiency. Interfaces to BLAS and LA-
PACK provide support for dense linear algebra. The PySparse package
[Geu02, Geu] was used to solve the sparse and banded systems resulting
from discretization in time using BVMs. This package provides, amongst
others, an interface to the sparse solver SuperLu [DEG+99], written in C.
The multigrid algorithms, that is the iterations over grids and grid points,
are written in Python. The overhead of this approach is negligible, if there
is enough work in the time dimension. For a large number of time steps
the efficiency of the sparse or dense solver is much more important than the
efficiency of the program that calls it.

Another interesting feature of the code is that it avoids building a matrix
for the fully discrete system whenever possible. All operators (smoother,
residual, restriction, prolongation) work directly on grids. For constant
stencils, only a few coefficients have to be stored. Such an approach is
straightforward for regular grids and an important reason for considering
their use. Because no adaptive methods are implemented, all grids can be
allocated at the start of the computation.

Python is only one possible choice of high level language. Other possi-
bilities are Perl or Ruby. Scheme, Common Lisp and OCaml are interesting
options because they provide both the possibility of fast development us-
ing an interpreter and efficient code using a compiler. The fact that these
languages are not ‘main-stream’ could be perceived as a disadvantage. A
common choice for scientific computing is Matlab [Mat]. Matlab is a very
rich language when it comes to numerical linear algebra, but it was not orig-
inally designed as a general computer language. Recent versions introduced
data structures other than matrices of floating point numbers, but in my
opinion still in a fairly ad-hoc way. Another disadvantage of Matlab is its
cost, especially when compared to, for example, Python which is free and
available on many platforms. On many systems Python is included in the
initial installation.

8.1.2 Convergence Analysis Code

The convergence analysis for the experiments in Chapter 4 was implemented
in Matlab. This implementation was straightforward, but quite slow. It
may be possible to use Matlab for a more efficient implementation, but this
would require serious restructuring of the code.

With the experience from the Matlab code, a much faster implementa-
tion was developed in the programming language ZPL [Sny99]. This is an
array processing language that compiles to very efficient C code. ZPL also
allows straightforward parallelization of algorithms that deal with regular
grids, but this aspect of the system was not exploited. The ZPL code only
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does the computation of ρ(M(z)) for a given set of z values. This is the
most computationally intensive part. Calculation of the z values (imagi-
nary axis, boundaries of stability domains), taking the maximum value and
plotting is done by a Python program that calls the ZPL code.

8.1.3 Multigrid for the ODE Solver GAMD

During a visit to the University of Bari in Italy a multigrid method was
integrated into the GAMD code. GAMD is a package for the solution of
ODEs, developed by Francesca Mazzia and Felice Iavernaro. The code is
based on the generalized Adams methods, a type of boundary value meth-
ods. Sophisticated methods for the control of both the step size and the
order of the methods is incorporated in the code. To handle the large linear
systems of the form A⊗ I −B⊗L (see Chapter 4), an iteration based on a
splitting of the matrices A and B is used, so that only systems of the form
aI + bL, with a and b scalars, have to be solved. This corresponds to the
systems in the LMM case and the standard multigrid methods can be used.
No block smoothing is necessary. The first results from experiments for pa-
rabolic model problems confirmed that the multigrid method allows much
larger problems to be solved efficiently. A next step would be to compare
this approach to the approach without the extra splitting for A and B, but
with a block smoother.

8.1.4 Finite Elements in Space and IRK in Time

Waveform relaxation methods for finite element instead of finite difference
discretizations were studied in [JV96a, JV96b]. Both the methods and their
analysis can be extended to the finite element case.

Some experiments were done using Femlab, a package to solve PDEs
using the finite element method. Applying the standard geometric multigrid
method to the matrix obtained after discretization using finite elements
in space and an implicit Runge-Kutta method in time, does not lead to
satisfactory convergence. By providing a block smoother to the geometric
multigrid of Femlab, it was confirmed that good convergence rates can be
achieved. The preliminary Matlab implementation of the block smoother
was, however, quite inefficient.

When a time-dependent parabolic PDE is discretized using finite ele-
ments on an general irregular grids, it is no longer straightforward to apply
geometric multigrid methods. For elliptic equations, a possible solution is
to use an algebraic multigrid (AMG) method. Such methods are called alge-
braic because they take as input the discretization matrix and no informa-
tion about the geometry of the underlying mesh (such as the location of the
grid points). Based on the matrix for the fine grid, a hierarchy of matrices for
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coarser ‘grids’ and the corresponding transfer operators are automatically
built. Advanced algebraic multigrid methods have been applied successfully
to discretizations of time-independent problems with anisotropy, varying or
jumping coefficients and irregular grids.

Just as for geometric multigrid a block smoother is necessary to achieve
good convergence for time-dependent problems. The SAMG package [Stü01b,
Stü01a] that implements algebraic multigrid methods for systems of PDEs,
is well suited for these types of problems. This packages was used to solve a
system of non-linear reaction-diffusion equations modeling the production
and consumption of oxygen and carbon dioxide in fruit [VlSV+05]. For this
application a Matlab interface to the SAMG code was developed.

8.2 Summary and Conclusions

It is well known that multigrid methods are an excellent choice for dis-
cretized elliptic as well as parabolic equations. Chapter 2 illustrated, using
the Poisson and the heat equation as model problems, how multigrid meth-
ods for elliptic equations can be extended to multigrid methods for para-
bolic equations. In the following chapters the same principles were applied
to derive methods for more general classes of problems and methods using
different time discretizations.

In Chapter 3 methods were derived for problems with varying coefficients
and coefficients that have a strong directional dependency. Two-grid Fourier
mode analysis, a standard method to analyze multigrid methods for elliptic
equations, was used to analyze the convergence of the methods.

Chapters 4 and 7 showed that the close link between the convergence of
iterative methods for time-dependent equations and the stability of the time
discretization, already established for linear multistep methods, also holds
for the implicit Runge-Kutta and boundary value methods. If continuous
waveform relaxation converges on the time interval [0,∞), then discrete
waveform relaxation with any A-stable ODE integrator converges as well.

In conclusion, combining an appropriate multigrid method with an ap-
propriate time discretization scheme results in an iterative method that con-
verges approximately as fast as the multigrid method for the corresponding
elliptic problem. The cost of one iteration is approximately that of one it-
eration for the elliptic case multiplied by the cost of integrating one scalar
ODE.

Chapters 4 and 5 showed that if multigrid methods can be used it is
worth considering time discretization schemes that would be very expensive
in other cases. The Radau IIA implicit Runge-Kutta method and the GAM
and GBDF boundary value methods were used in Chapter 4. Chebyshev
spectral collocation, a spectral method, was studied in Chapter 5
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In Chapter 6 differential equations with a delay term were considered.
It was shown that multigrid waveform relaxation methods can be extended
to handle DDEs derived from delay PDEs.

Chapter 7 presented an elegant way to determine the spectra of many
iteration operators using functional calculus. The theory clearly illustrates
the relation between spectra of waveform relaxation operators on infinite
time domains and the stability domains of the time discretization scheme.
It was briefly explained how the theory developed to analyze waveform
relaxation, can also be used to analyze two-grid iterations such as the ones
considered in Chapter 3.

8.3 Suggestions for Further Research

A current topic of research is the use of algebraic multigrid methods to
solve large finite element discretizations of time-dependent PDEs. This is a
promising direction when irregular and/or adaptive meshes are appropriate.
Software such as SAMG, developed for systems of elliptic PDEs, could be
used as a starting point. Preliminary results suggest that multigrid methods
with well chosen block smoothers are prime candidates for solving systems
of time-dependent PDEs.

Some of the methods discussed in this thesis lead to subsystems with a
large number of unknowns in each spatial grid point. For very large systems
it may become necessary to exploit the structure of these systems. For the
banded matrices arising from BVMs, sparse solvers were used. In some
cases it may be possible to use more specialized techniques such as iterative
methods with Toeplitz or circulant preconditioners. For Chebyshev spectral
collocation the use of fast Fourier or cosine transforms could be beneficial.

It would be interesting to incorporate ideas from existing ODE integra-
tors into solvers for large scale problems. Codes such as GAMD [IM99] and
RADAU5 [HW96] make use of error estimators, variable step size and vari-
able order. Another approach would be to use an existing ODE integrator
to solve the scalar subsystems that arise in multigrid waveform relaxation
methods. Similarly, it would be very interesting to use advanced DDE inte-
grators such as RADAR5 [GH01] as the scalar solver in multigrid methods
for DPDEs. This would also allow the consideration of PDEs with mul-
tiple delays, distributed delays and delays that depend on time, position
and/or the solution itself. The results from [HV03] for the stability of a
model problem with both fixed and distributed delay could be useful for a
convergence analysis. An important issue for general delay problems is that
values of the solution in the past may be needed at times in between points
of the time discretization mesh. The interpolation or continuous extension
method used to approximate at such off-mesh points and its interaction with
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the time discretization scheme will influence, for example, the convergence
of iterative methods.

The theory developed in Chapter 7 covers most classical waveform re-
laxation results for linear systems of ODEs. It does not immediately cover
waveform relaxation for linear systems of delay differential equations as dis-
cussed in Chapter 6. For this case, a functional calculus is needed for a larger
class of functions that are not necessarily analytic at infinity. An extended
functional calculus [Haa05] such as the Hille-Phillips calculus, based on the
theory of semigroups of operators [HP74], would be appropriate. Another
type of equations that could be studied are differential algebraic equations.
Systems of differential algebraic equations can be written as (7.17) with M
singular.

In this thesis the non-normality of the iterations operators for time-
dependent problems was handled by considering infinite time intervals. An-
other option, that may provide different information, is the use of pseu-
dospectra instead of spectra. A pseudospectral analysis of anisotropic PDEs
and delay PDEs could be performed, for example. Not only spectra, but
also pseudospectra of waveform relaxation operators [JOW98, LW97] could
be studied using functions of operators. For a spectral mapping theorem for
the pseudospectra of scalar functions of matrices and bounded linear oper-
ators see [Lui03]. It may be possible to extend this theory to matrix-valued
functions.

Many formulae could be represented more naturally using matrix pencils
and generalized eigenvalues (for example σ(B−1A) = σ(A,B)). In this re-
spect it would also be interesting to investigate how the theory of joint spec-
tra of operators could be used [Tay70, CV78, Vas82]. The related spectral
theory of tensor products of operators [BP66, Sch69, DS70, RS73, Ich78a,
Ich78b] would also be needed to extend the spectral mapping theorems for
scalar and matrix-valued functions to operator-valued functions.
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Je n’ai fait celle-ci plus longue que parce que je n’ai pas eu le
loisir de la faire plus courte. (Blaise Pascal)
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