## BICS Away Day Theme D Presentation

#### Ivan Graham, Robert Scheichl, Jan Van lent

Theme D

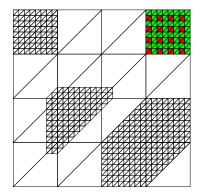
#### Wednesday 19 September 2007

# Domain Decomposition Methods for Elliptic PDEs

• typical equation : diffusion with variable coefficients

$$-\nabla\cdot(\alpha\nabla u)=f$$

- applications : flow in porous media, materials with microstructures
- goal : efficient w.r.t. problem size, coefficients
- method
  - $\blacktriangleright$  discretise  $\rightarrow$  large system of equations, ill-conditioned
  - domain decomposition : divide problem into many small subproblems
  - two-level method : additionally solve coarse problem


#### **Research Topics**

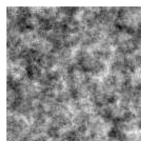
- staggered grids
- deflation : work on links between additive and hybrid Schwarz and deflation implementation, conferences (rs), paper (rs,igg)
- last BICS away day : choice of boundary conditions for coarse basis
- new development : energy minimising coarse spaces

#### Robust Coarse Spaces

- solve local problems to construct coarse space basis
- boundary conditions on coarse grid s.t. partitition of unity
- alternative : simple zero boundary conditions on overlapping supports, implicitely impose partition of unity constraint
- equivalent to constrained energy minimisation (studied by multigrid community)
- need to solve system of same size as original
- but very structured, can be done efficiently

#### Example: Fine Scale Binary Medium




 $\alpha = 10^{6}$ 

| n <sub>s</sub> n m | one | lin | linbc | oscbc | erg |
|--------------------|-----|-----|-------|-------|-----|
| 4 8 32             | 24  | 34  | 34    | 24    | 25  |
| 8 8 64             | 40  | 59  | 62    | 27    | 27  |
| 168128             | 77  | 112 | 115   | 26    | 26  |
| 32 8 256           | 154 | 219 | 240   | 26    | 26  |

| <i>n<sub>s</sub></i> = 32, <i>n</i> = 8, <i>m</i> = 256 |     |     |           |       |     |  |  |  |
|---------------------------------------------------------|-----|-----|-----------|-------|-----|--|--|--|
| $\alpha$                                                | one | lin | linbc     | oscbc | erg |  |  |  |
| 10 <sup>0</sup>                                         | 129 | 22  | 22        | 22    | 22  |  |  |  |
| 10 <sup>2</sup>                                         | 132 | 81  | 52        | 23    | 23  |  |  |  |
| 10 <sup>4</sup>                                         | 132 | 218 | 52<br>218 | 25    | 26  |  |  |  |
| 10 <sup>6</sup>                                         | 154 | 219 | 240       | 26    | 26  |  |  |  |

#### Example: Gausian Random Field

# mean 0, variance $\sigma^2$ , correlation length $\lambda$



 $\lambda = 5h$ 

| $\sigma^2$ | one | lin | linbc | oscbc | erg |
|------------|-----|-----|-------|-------|-----|
| 0          | 67  | 22  | 22    | 22    | 23  |
| 2          | 162 | 44  | 40    | 36    | 35  |
| 4          | 226 | 65  | 55    | 46    | 44  |
| 8          | 377 | 121 | 94    | 65    | 62  |
| 12         | 531 | 199 | 146   | 86    | 81  |
| 16         | 662 | 304 | 213   | 108   | 103 |
| 20         | 819 | 440 | 297   | 133   | 126 |

#### $\alpha = \exp \text{Gaussian}$

| Robustness of Coarse Basis Construction |              |    |     |     |                   |   |            |           |           |           |    |
|-----------------------------------------|--------------|----|-----|-----|-------------------|---|------------|-----------|-----------|-----------|----|
| binary medium                           |              |    |     |     | Gaussian field    |   |            |           |           |           |    |
| lpha                                    | A            | D  | )   | Е   | С                 |   | $\sigma^2$ | А         | D         | Е         | С  |
| 10 <sup>0</sup>                         | 53           | 4  | 3 3 | 18  | 10                |   | 0          | 38        | 44        | 18        | 10 |
| 10 <sup>2</sup>                         | 70           | 10 | 8 5 | 56  | 10                |   | 2          | 96        | 94        | 37        | 13 |
| 10 <sup>4</sup>                         | 71           | 11 | 9 1 | 34  | 9                 |   | 4          | 138       | 164       | 55        | 14 |
| 10 <sup>6</sup>                         | 71           | 3  | 72  | 00+ | 9                 |   | 8          | 200       | $200^+$   | 96        | 15 |
| l                                       |              |    |     |     |                   |   | 12         | $200^{+}$ | $200^+$   | 152       | 16 |
| n <sub>s</sub> n I                      | $\mathbf{m}$ | А  | D   | Е   | C                 |   | 16         |           | $200^{+}$ |           | 16 |
| 483                                     | 32           | 18 | 33  | 16  | 7 10              | ) | 20         | $200^{+}$ | $200^{+}$ | $200^{+}$ | 17 |
| <mark>8</mark> 86                       | 64           | 31 | 37  | 20  | 0 <sup>+</sup> 10 | ) |            |           |           |           |    |
| 1681                                    | 28           | 52 | 38  | 20  | 0 <sup>+</sup> 10 | ) |            |           |           |           |    |
| <mark>32</mark> 82                      | 56           | 71 | 37  | 20  | 0 <sup>+</sup> 9  |   |            |           |           |           |    |

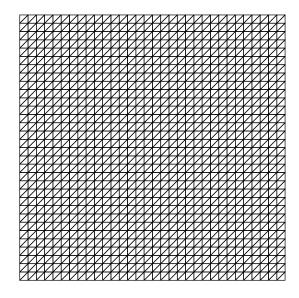
#### Future

- finish papers
- convergence analysis
- choice of supports (aggregation method) visit Eero Vainikko (Tartu)
- tensor problems
- non-symmetric problems (e.g. convection)
- start collaboration with cjb : adaptive methods

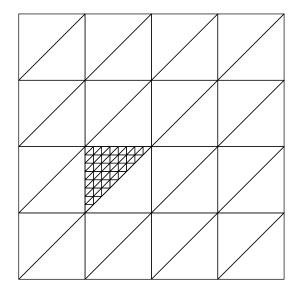
#### Presentations

- Numerical Analysis Seminars (dd 15/12/06, convection 16/2)
- Computational Science Workshop (Bath, 10/1)
- Multigrid Conference (Copper Mountain, CO, 16/3)
- UTexas Seminar (Austin, TX, 25/3)
- Numerical Analysis Conference (Dundee, 26/6)
- NAMMAC (Bath, 5/9)

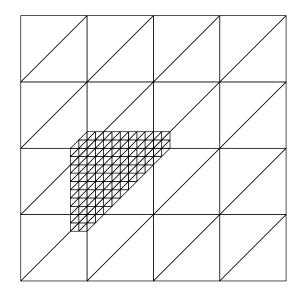
Many discussions at Copper, Austin, NAMMAC.


#### Internal and External Links

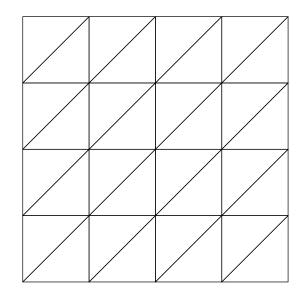
- Jeremy Campbell MSc project 'Modelling the Injection of *CO*<sub>2</sub> into Deep Saline Aquifers'
  - supervisors : Steven Benbow (Quintessa), Jonathan Evans, jvl
  - system of coupled diffusion equations
  - several non-linear constitutive relations
  - cylindrically symmetric model
  - self-similar solution
- Sean Buckeridge PhD project 'Numerical Solution of Weather and Climate Models'
  - supervisors : rs/jvl and Mike Cullen (Met Office)
  - integrate multigrid methods in Met Office code
  - spherical geometry, anisotropy, varying coefficients
  - parallelisation


#### External Links

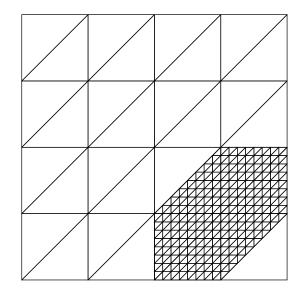
- Eero Vainikko (Tartu) domain decomposition code
- Sabine Le Borne (TTU) convection
- Mary Wheeler & co (Austin) multiscale methods
- Paul Godden (ICR) modelling ultrasound treatment, help with modelling, numerics, programming, linux
- Tom Hou, Jay Chu (Caltech) multiscale methods
- Ian Sloan (UNSW) approximation on sphere


• fine grid




- fine grid
- subdomains




- fine grid
- subdomains
- overlap



- fine grid
- subdomains
- overlap
- coarse grid



- fine grid
- subdomains
- overlap
- coarse grid
- coarse basis

