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Overview
elliptic equation with variable coefficient α > 0

∇ · (α∇u) = f

finite element discretization

system of equations

Au = f

preconditioned conjugate gradient

one-level domain decomposition preconditioner

two-level domain decomposition preconditioner

how to construct the second level?
Ivan, Rob, Jan (Bath) Robust Coarsening for DD Mon 2007-03-26 2 / 24



Solving the System of Equations
system of equations

Au = f

A is symmetric positive definite

A is large, but sparse and structured

1D, linear elements: tridiagonal

2D, regular grid, linear elements:
block tridiagonal with tridiagonal blocks

direct solvers for 1D, maybe 2D, not 3D

constant coefficients: (block-)Toeplitz, FFT

unstructured grids, varying coefficients:
multilevel iterative methods
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Iterative Methods
preconditioned Richardson method

uk+1 = uk + B(f − Auk)

convergence if ρ(I − BA) < 1
preconditioned conjugate gradient method
convergence determined by κ(BA)
scalable and robust methods:
number of iterations and cost per iteration well
behaved w.r.t.

I problem size, mesh resolution
I number of subdomains
I coefficients!

ideally for N unknowns:
O(1) iterations, O(N) operations per iteration
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Domain Decomposition Methods

whole system too much for direct solver (or 1
computer)

decompose the problem into smaller subproblems

subproblems are coupled : iteration

divide domain into smaller subdomains

many different types

here overlapping additive Schwarz method
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Restriction Matrices (1D)
overlapping subdomains

restriction matrices Ri =

R3 =


0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0


extension matrices RT

i =
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Formulation of the One-Level Method

restriction of whole space to subspace i : Ri =

extension from subspace i into whole space :
RT

i =

matrix for subproblem RiART
i = =

for injection, Ai is submatrix of A

preconditioner
y = Bx =

∑
i R

T
i A−1

i Rix
= ( −1 + −1 + · · · )
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Convergence of the One-Level Method
not scalable, illustrate with 1D problem
rhs f = 0, BC u(0) = 1, u(1) = 0, start with u0 = 0
information moves 1 subdomain per iteration

number of iterations depends on number of
subdomains
remedy: in addition to local solves, do 1 global solve
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Formulation of the Two-Level Method
fine level: subproblems that cover the whole problem

B =
∑

i

RT
i A−1

i Ri

coarse level: one smaller problem for whole domain

B̂ = RT
0 A−1

0 R0

choice of coarse problem
I one unknown from each subdomain
I average unknowns in one subdomain
I weighted average, linear basis functions
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Formulation of the Two-Level Method
system Au = f
restriction matrices Ri

local problems Ai = RiART
i

one-level preconditioner

B =
∑

i

RT
i A−1

i Ri

coarse problem A0 = R0ART
0

two-level preconditioner

B̃ = RT
0 A−1

0 R0 +
∑

i

RT
i A−1

i Ri

columns ri of RT
0 represent coarse basis functions
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Construction of the Coarse Space
basis functions defined on subdomains ri = RT

i qi

solution of local problem Aiqi = gi

well chosen right hand side gi

assume gi = Rig ⇒ ri = RT
i A−1

i Rig

preservation of constants
∑

i ri = 1∑
i

ri =
∑

i

RT
i A−1

i Rig = Bg = 1

g corresponds to the Lagrange multipliers of a
constrained minimization problem (Wan, Chan,
Smith 2000) (Xu, Zikatanov 2004)

how to solve the system Bg = 1?
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Preconditioning the One-Level
Preconditioner

precondition B with A

κ(AB) = κ(BA)

only as good as one-level method

B has special structure, “local” operator

no global solve needed

construct one-level preconditioner for B
(hinted at in Zikatanov, Xu 2004)
other ideas

I diagonal preconditioner : D = diag(B)−1

I localized version of A : E =
∑

i R
T
i AiRi
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One-Level Preconditioner for the
One-Level Preconditioner

matrix A

one-level preconditioner B =
∑

i R
T
i A−1

i Ri

local problems for Ai = RiART
i

Ai is sparse

one-level preconditioner C =
∑

j R
T
j B−1

j Rj

local problems Bj = RjBRT
j

Bj is dense

B ∼ A−1 and C ∼ B−1 so somehow C ∼ A
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Implementing the Preconditioner
consider a domain j with 2 neighbors k and l

RjR
T
j = Ij , RjR

T
k = Îjk 6= 0, RjR

T
l = Îjl 6= 0

local problem j

Bj = RjBRT
j

= Rj(
∑

i

RT
i A−1

i Ri)R
T
j

= A−1
j + ÎjkA

−1
k Îkj + ÎjlA

−1
l Îlj

all A−1
i are dense

how can we efficiently apply B−1
j ?

Ivan, Rob, Jan (Bath) Robust Coarsening for DD Mon 2007-03-26 14 / 24



Linear Algebra Trick
local problem solve

B−1
j = (A−1

j + ÎjkA
−1
k Îkj + ÎjlA

−1
l Îlj)

−1

apply Sherman-Morisson-Woodbury formula

(A−1 + UΣ−1V T )−1 = A− AU(Σ + V TAU)−1V TA

set A← Aj , U = V ←
[
Îjk Îjl

]
, Σ←

[
Ak

Al

]
B−1

j = Aj−Aj

[
Îjk Îjl

]([
Ak

Al

]
+

[
Îkj
Îlj

]
Aj

[
Îjk Îjl

])−1 [
Îkj
Îlj

]
Aj

sparse system solve
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Efficiency and Robustness

number of iterations : κ(CB)

cost of C : multiple of cost of B

constants depend only on
number of neighbors of subdomains,
not on number of domains or coefficients

therefore constructing R0 is scalable and robust
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Spectral Analysis (a)

constant coefficients, small domains (∼ multigrid)
n = (2, 2), d = 1, min α = 1.0, max α = 1.0,
np = (32, 32)

λmax λmin κ
A 7e0 9e − 3 8e2
BA 6e0 1e − 2 5e2

B̃A 6e0 9e − 1 6e0
ClBl 2e0 8e − 1 2e0
DlBl 2e0 4e − 1 4e0
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Spectral Analysis (b)

constant coefficients, large domains
n = (8, 8), d = 4, min α = 1.0, max α = 1.0, np = (8, 8)

λmax λmin κ
A 7e0 9e − 3 8e2
BA 6e0 1e − 1 3e1

B̃A 6e0 1e0 6e0
ClBl 4e0 9e − 1 4e0
DlBl 1e1 2e − 1 5e1
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Spectral Analysis (c)

varying coefficients
n = (8, 8), d = 4, σ = 4.0, min α = 5e − 6,
max α = 3e3, np = (8, 8)

λmax λmin κ
A 4e5 2e − 2 2e7
BA 6e0 8e − 2 7e1

B̃A 6e0 8e − 1 7e0
ClBl 6e0 9e − 1 6e0
DlBl 2e1 8e − 5 3e5
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Summary

considered elliptic equations with varying coefficients

two-level preconditioner
for a given set of overlapping subdomains

construction is not cheap, but algebraic, scalable
and robust
main ideas

I one-level preconditioner for one-level preconditioner
I linear algebra trick

topics for further research
I analysis of κ(CB)
I for overall scalability and robustness,

it is important to choose the subdomains well
I non-symmetric systems
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Convergence of the Two-Level Method
coefficient explicit theory for overlapping Schwarz
(Scheichl & Vainikko 2006)
coarse space robustness indicator

γ(α) = max
i

δ2
i ‖α|∇Φi |2‖L∞

condition number bound

κ(B̃A) . γ(α)

(
1 + max

i

Hi

δi

)
we want Φi that are flat where α is high
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Energy Minimizing Coarse Space Basis

from the theory we know that
I energy of basis functions must be low ‖α|∇Φi |2‖L∞

rT
i Ari = ‖ri‖2A

I basis functions must preserve constants
∑

i Φj = 1∑
i

ri = 1

constrained minimization problem
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Constrained Minimization Problem

(Wan, Chan, Smith 2000)

min
∑

i

rT
i Ari = tr R0ART

0 = tr A0

s.t.
∑

i

ri = R01 = 1

ri = RT
i qi

solve using Lagrange multipliers
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