Iterative Methods for Elliptic Equations with Varying Coefficients

Jan Van lent

BICS Department of Mathematical Sciences University of Bath

Computational Science Workshop Tuesday 10 January 2007

Overview

 \bullet elliptic equation with variable coefficient $\alpha\succ\mathbf{0}$

$$\nabla \cdot (\alpha \nabla u) = f$$

- highly varying α
- motivation : flow in porous media
- finite element discretisation
- large system of equations

$$\mathbf{A}\mathbf{u} = \mathbf{f}$$

multilevel iterative methods

Motivation: Sedimentary Basin Simulation

F. Schneider et al., Oil & Gas Science and Technology 55(1), 2000

Jan Van lent (BICS)

Two-Level Preconditioners

Tue 2007-01-10 3 / 17

L

Motivation: Groundwater Flow (Sellafield)

CROWN SPACE WASTE VAULTS FAULTED GRANITE GRANITE DEEP SKIDDAW N-S SKIDDAIN DEEP LATTERBARROW N-S LATTERBARROW FAULTED TOP M-F BVG TOP M-F BVG FAULTED BLEAWATH BVG RIEAWATH RVG FAULTED F-H BVG F-H BVG UNDIFF BVG FAULTED N-S BVG N-S BVG FAULTED CARB LST CARB LST FAULTED COLLYHURST COLLYHURST BROCKRAM SHALES + EVAP FAULTED BNHM BOTTOM NHM FAULTED DEEP ST BEES FAULTED N-9 ST BEES N-S STREES FAULTED VN-S ST REES VN-9 ST REES FAULTED DEEP CALDER FAULTED N-S CALDER N-S CALDER FAULTED VN-S CALDER VN-S CALDER MERCIA MUDSTONE QUATERNARY

◆ロト ◆聞ト ◆臣ト ◆臣ト

Ē

©NIREX UK Ltd.

Jan Van lent (BICS)

3

Motivation: Stochastic Model

Cliffe, Graham, Scheichl, Stals, 2000

- lognormal Gaussian random field
- variance σ^2 : contrast
- length scale $\lambda = 5, 10, 20, 50$: roughness

Solving the System of Equations

system of equations

Au = f

- A is symmetric positive definite
- A is large, but sparse and structured
- 1D, linear elements: tridiagonal
- 2D, regular grid, linear elements: block tridiagonal with tridiagonal blocks
- direct solvers for 1D, maybe 2D, not 3D
- constant coefficients: (block-)Toeplitz, FFT
- unstructured grids, varying coefficients: multilevel iterative methods

Domain Decomposition Methods

- whole system too much for direct solver (or 1 computer)
- decompose the problem into smaller subproblems
- subproblems are coupled: iteration
- divide domain into smaller subdomains
- many different types
- here overlapping additive Schwarz method
- aim: scalable and robust methods number of iterations and cost per iteration well behaved w.r.t.
 - problem size
 - number of subdomains
 - coefficients!
- ideally for N unknowns:

O(1) iterations, O(N) operations per iteration

Grid

Jan Van lent (BICS)

Tue 2007-01-10 8 / 17

<ロ> < 団> < 団> < 団> < 団> < 団> < 団> < O</p>

Overlapping Subdomains

Jan Van lent (BICS)

Subdomain

Jan Van lent (BICS)

Tue 2007-01-10 10 / 17

Formulation of the One-Level Method

- CG for A with preconditioner B
- only matrix-vector products for A and B
- number of iterations $\sim \kappa(BA)$
- overlapping subdomains

overlapping additive Schwarz method

$$y = Bx$$
$$= \sum_{i} R_{i}^{T} A_{i}^{-1} R_{i} x$$

Jan Van lent (BICS)

Tue 2007-01-10 11 / 17

Convergence of the One-Level Method

- not scalable
- illustrate with 1D problem
- rhs f = 0, BC u(0) = 1, u(1) = 0, start with $u^0 = 0$
- information moves at rate of 1 subdomain per iteration

• number of iterations depends on number of subdomains

• remedy: in addition to local solves, do global solve

Jan Van lent (BICS)

Formulation of the Two-Level Method

• fine level: subproblems that together cover the whole problem

$$B = \sum_{i} R_i^T A_i^{-1} R_i$$

• coarse level: one smaller problem for the whole domain

Choice of Coarse Space

- choice of R_0 is very important for good convergence
- incorporate coefficients
- from theory we know that
 - energy of basis functions must be low
 - basis functions must preserve constants
- set up constrained minimisation problem
- columns of R_0^T

$$R_i^T A_i^{-1} R_i g$$

where

$$Bg = \mathbf{1}$$

• how to solve this system?

One-Level Preconditioner for the One-Level Preconditioner

- B has special structure, "local" operator
- no global solve needed
- construct one-level preconditioner for B
- matrix A
- one-level preconditioner $B = \sum_{i} R_i^T A_i^{-1} R_i$
- local problems for $A_i = R_i A R_i^T$
- one-level preconditioner $C = \sum_j R_j^T B_j^{-1} R_j$
- local problems $B_j = R_j B R_j^T$

Efficiency and Robustness

- A_i sparse $\rightarrow Bx$ efficient
- B_i dense
- $B \sim A^{-1}$ and $C \sim B^{-1}$ so somehow $C \sim A$
- Cx can be implemented efficiently
- number of iterations $\sim \kappa(CB)$
- constructing R_0 is scalable and robust

Summary

- considered elliptic equations with varying coefficients
- very large systems of equations
- two-level preconditioner
- construction is not cheap, but algebraic, scalable and robust
- main ideas
 - one-level preconditioner for one-level preconditioner
 - efficient implementation
- topics for further research
 - for overall scalability and robustness,
 - it is important to choose the subdomains well
 - non-symmetric systems