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Overview

elliptic equation with variable coefficient α � 0

∇ · (α∇u) = f

highly varying α

motivation : flow in porous media

finite element discretisation

large system of equations
Au = f

multilevel iterative methods
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Motivation: Sedimentary Basin Simulation

F. Schneider et al., Oil & Gas Science and Technology 55(1), 2000
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Motivation: Groundwater Flow (Sellafield)
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Motivation: Stochastic Model
Cliffe, Graham, Scheichl, Stals, 2000

lognormal Gaussian random field
variance σ2 : contrast
length scale λ = 5, 10, 20, 50 : roughness
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Solving the System of Equations

system of equations
Au = f

A is symmetric positive definite

A is large, but sparse and structured

1D, linear elements: tridiagonal

2D, regular grid, linear elements:
block tridiagonal with tridiagonal blocks

direct solvers for 1D, maybe 2D, not 3D

constant coefficients: (block-)Toeplitz, FFT

unstructured grids, varying coefficients:
multilevel iterative methods
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Domain Decomposition Methods

whole system too much for direct solver (or 1 computer)

decompose the problem into smaller subproblems

subproblems are coupled: iteration

divide domain into smaller subdomains

many different types

here overlapping additive Schwarz method

aim: scalable and robust methods
number of iterations and cost per iteration well behaved w.r.t.

I problem size
I number of subdomains
I coefficients!

ideally for N unknowns:
O(1) iterations, O(N) operations per iteration
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Grid
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Overlapping Subdomains
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Subdomain
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Formulation of the One-Level Method

CG for A with preconditioner B

only matrix-vector products for A and B

number of iterations ∼ κ(BA)

overlapping subdomains

overlapping additive Schwarz method

y = Bx

=
∑

i

RT
i A−1

i Rix
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Convergence of the One-Level Method

not scalable

illustrate with 1D problem

rhs f = 0, BC u(0) = 1, u(1) = 0, start with u0 = 0

information moves at rate of 1 subdomain per iteration

number of iterations depends on number of subdomains

remedy: in addition to local solves, do global solve
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Formulation of the Two-Level Method

fine level: subproblems that together cover the whole problem

B =
∑

i

RT
i A−1

i Ri

coarse level: one smaller problem for the whole domain

B̂ = RT
0 A−1

0 R0

two-level preconditioner
B̃ = B̂ + B
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Choice of Coarse Space

choice of R0 is very important for good convergence

incorporate coefficients

from theory we know that
I energy of basis functions must be low
I basis functions must preserve constants

set up constrained minimisation problem

columns of RT
0

RT
i A−1

i Rig

where
Bg = 1

how to solve this system?
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One-Level Preconditioner for the One-Level Preconditioner

B has special structure, “local” operator

no global solve needed

construct one-level preconditioner for B

matrix A

one-level preconditioner B =
∑

i R
T
i A−1

i Ri

local problems for Ai = RiART
i

one-level preconditioner C =
∑

j RT
j B−1

j Rj

local problems Bj = RjBRT
j
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Efficiency and Robustness

Ai sparse → Bx efficient

Bi dense

B ∼ A−1 and C ∼ B−1 so somehow C ∼ A

Cx can be implemented efficiently

number of iterations ∼ κ(CB)

constructing R0 is scalable and robust
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Summary

considered elliptic equations with varying coefficients

very large systems of equations

two-level preconditioner

construction is not cheap, but algebraic, scalable and robust

main ideas
I one-level preconditioner for one-level preconditioner
I efficient implementation

topics for further research
I for overall scalability and robustness,

it is important to choose the subdomains well
I non-symmetric systems
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