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Motivation: Groundwater Flow (Sellafield)
c©NIREX UK Ltd.

V +A(x)∇P = F (Darcy’s Law)

∇ · V = 0 (incompressibility)

+ boundary conditions
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Model Problem

elliptic PDE in 2D or 3D bounded domain Ω

−∇ · (α∇u) = f (u = 0 on ∂Ω)

highly variable (discontinuous) coefficients α

finite element discretisation on mesh T h

Au = f

very large and very ill-conditioned

κ(A) . max
τ,τ ′∈T h

(
ατ

ατ ′

)
h−2
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Goals

unstructured grids, varying coefficients:
multilevel iterative methods

domain decomposition:
two-level additive Schwarz method

scalable and robust methods:

I # iterations and
I cost per iteration

well behaved w.r.t.
I problem size, mesh resolution
I number of subdomains
I coefficients!
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Domain Decomposition
Two-Level Overlapping Additive Schwarz Method

fine grid

subdomains

overlap

coarse grid

coarse basis
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Formulation of the Two-Level Method
system matrix A

• restriction matrices Ri

• local problems Ai = RiART
i

• one-level preconditioner

B =
∑

i

RT
i A−1

i Ri

• restriction matrix R0

• coarse problem A0 = R0ART
0

• two-level preconditioner

B̃ = RT
0 A−1

0 R0 +
∑

i

RT
i A−1

i Ri
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Choice of Coarse Space

select coarse space basis {Ψj} of
finite element functions
with

∑
j Ψj ≡ 1

basis function Ψj represented by coefficient vector rj
vectors rj columns of prolongation matrix RT

0

coarse space is spanned by columns of RT
0

basis function Ψj has support ωj

{ωj} shape regular, uniformly overlapping, finite
covering of Ω
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Convergence Theory
Coefficient Explicit Condition Number Bound

theorem [Scheichl, Vainikko, 2007]

κ(B̃A) . γ(α)

(
1 + max

j

Hj

δj

)
I Hj measure for diameter of ωj

I δj measure for overlap
I γ(α) coarse space robustness indicator

γ(α) = max
j

δ2
j

∥∥α|∇Ψj |2
∥∥

L∞(Ω)

guides choice of {Ψj} w.r.t. α:
energy minimisation
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Energy Minimising Coarse Basis

for given A and Rj

coefficient vector of coarse basis function Ψj

rj = RT
j qj

energy minimisation problem

min
∑

j

qT
j Ajqj

s.t.
∑

j

RT
j qj = 1
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Construction of the Coarse Space

basis functions defined locally rj = RT
j qj

solution of local problem Ajqj = gj

well chosen right hand side gj

assume gj = Rjg ⇒ rj = RT
j A−1

j Rjg

preservation of constants
∑

j rj = 1∑
j

rj =
∑

j

RT
j A−1

j Rjg = Bg = 1

g : Lagrange multipliers of
constrained minimisation problem
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Example: Fine Scale Binary Medium

α = 106

ns n m one lin linbc oscbc erg
4 8 32 24 34 34 24 25
8 8 64 40 59 62 27 27
16 8 128 77 112 115 26 26
32 8 256 154 219 240 26 26

ns = 32, n = 8, m = 256
α one lin linbc oscbc erg

100 129 22 22 22 22
102 132 81 52 23 23
104 132 218 218 25 26
106 154 219 240 26 26
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Example: Gausian Random Field
mean 0, variance σ2, correlation length λ

λ = 5h λ = 50h

coefficient α = exp Gaussian
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Variance Robustness

σ2 one lin linbc oscbc erg
0 67 22 22 22 23
2 162 44 40 36 35
4 226 65 55 46 44
8 377 121 94 65 62
12 531 199 146 86 81
16 662 304 213 108 103
20 819 440 297 133 126
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Solving the Partition of Unity System

how to solve the system Bg = 1?

exploit structure of B =
∑

i R
T
i A−1

i Ri

1 precondition B with A [Wan, Chan & Smith 2000]

only as good as one-level method
2 diagonal preconditioner [Xu, Zikatanov 2004]

D = diag(B)−1

3 localised version of A
E =

∑
i R

T
i AiRi

4 construct one-level preconditioner C for B
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One-Level Preconditioner for a One-Level
Preconditioner

matrix A

local problems for Ai = RiART
i

one-level preconditioner B =
∑

i R
T
i A−1

i Ri

local problems Bj = RjBRT
j

one-level preconditioner C =
∑

j R
T
j B−1

j Rj

A and Ai sparse, but B and Bj dense

B ∼ A−1 and C ∼ B−1 so somehow C ∼ A
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Implementing the Partition of Unity
Preconditioner

consider a domain j with 2 neighbours k and l
local problem solve

B−1
j = (A−1

j + ÎjkA
−1
k Îkj + ÎjlA

−1
l Îlj)

−1

Sherman-Morrison-Woodbury formula

B−1
j = Aj − Aj

[
Îjk Îjl

]
H−1

kl

[
Îkj
Îlj

]
Aj

Hkl =

[
Ak

Al

]
+

[
Îkj
Îlj

]
Aj

[
Îjk Îjl

]
sparse system solve
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Robustness of the Partition of Unity
Preconditioner

binary medium

α A D E C
100 53 43 18 10
102 70 108 56 10
104 71 119 134 9
106 71 37 200+ 9

ns n m A D E C
4 8 32 18 33 167 10
8 8 64 31 37 200+ 10
16 8 128 52 38 200+ 10
32 8 256 71 37 200+ 9

Gaussian field

σ2 A D E C
0 38 44 18 10
2 96 94 37 13
4 138 164 55 14
8 200 200+ 96 15
12 200+ 200+ 152 16
16 200+ 200+ 199 16
20 200+ 200+ 200+ 17
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Remarks

coarse grid construction is scalable

more costly than other coarsening strategies, but “optimal”

inaccurate solve sufficient for Bg = 1

important: choice of supports

ideas: aggregation (strong connections), compatible relaxation, . . .

alternative interpretation: optimal BCs for multiscale FE

interesting also for numerical homogenisation (upscaling)
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Summary

considered elliptic equations with varying coefficients

two-level preconditioner
for a given set of overlapping supports

construction is not cheap, but algebraic, scalable
and robust
main ideas

I simple construction of coarse space
I one-level preconditioner for one-level preconditioner
I implementation via Sherman-Morrison-Woodbury

topics for further research
I convergence analysis
I choice of supports
I tensor coefficients
I non-symmetric systems
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