Constructing Robust Coarse Spaces for Overlapping Schwarz Methods

Jan Van lent, Ivan Graham and Robert Scheichl

BICS Department of Mathematical Sciences University of Bath

NAMMAC07 University of Bath Wednesday 5 September 2007

Motivation: Groundwater Flow (Sellafield)

$$V + \mathcal{A}(x)\nabla P = F$$
 (Darcy's Law)
 $\nabla \cdot V = 0$ (incompressibility)
+ boundary conditions

ED7 CROWN SPACE WASTE VAULTS FAULTED GRANITE GRANITE DEEP SKIDDAW N-S SKIDDAW DEEP LATTERBARROW N-S | ATTERBARROW FAULTED TOP M-F BVG TOP M-F BVG FAULTED BLEAWATH BVG BLEAWATH BVG FAULTED F-H BVG F-H BVG FAULTED UNDIFF BVG LINDIFF BVG FAULTED N-S BVG N-S BVG FALLI TED CARR I ST CARBIST EALILITED COLL VHURST COLLYHURST FAULTED BROCKRAM BROCKRAM SHALES + EVAP FAULTED BNHM BOTTOM NHM FAULTED DEEP ST BEES DEEP ST BEES FAULTED N-S ST BEES N-S ST BEES FAULTED VN-S ST BEES VN-S ST BEES FAULTED DEEP CALDER DEEP CALDER FAULTED N-S CALDER N-S CALDER FAULTED VN-S CALDER VN-S CALDER MERCIA MUDSTONE QUATERNARY

Ē

ŏ

ň

Ē

Ē

Ē

Ē

Model Problem

 $\bullet\,$ elliptic PDE in 2D or 3D bounded domain Ω

$$-\nabla \cdot (\alpha \nabla u) = f$$
 $(u = 0 \text{ on } \partial \Omega)$

- highly variable (discontinuous) coefficients α
- finite element discretisation on mesh \mathcal{T}^h

$$Au = f$$

• very large and very ill-conditioned

$$\kappa(A) \lesssim \max_{ au, au' \in \mathcal{T}^h} \left(rac{lpha_{ au}}{lpha_{ au'}}
ight) h^{-2}$$

Goals

- unstructured grids, varying coefficients: multilevel iterative methods
- domain decomposition: two-level additive Schwarz method
- scalable and robust methods:
 - # iterations and
 - cost per iteration
 - well behaved w.r.t.
 - problem size, mesh resolution
 - number of subdomains
 - coefficients!

• fine grid

• fine grid

subdomains

• fine grid

subdomains

overlap

- fine grid
- subdomains
- overlap
- coarse grid

Domain Decomposition

Two-Level Overlapping Additive Schwarz Method

- fine grid
- subdomains
- overlap
- coarse grid
- coarse basis

Formulation of the Two-Level Method

- system matrix A
- restriction matrices R_i
- local problems $A_i = R_i A R_i^T$
- one-level preconditioner

$$B = \sum_{i} R_i^T A_i^{-1} R_i$$

- restriction matrix R₀
- coarse problem $A_0 = R_0 A R_0^T$
- two-level preconditioner

$$\tilde{B} = R_0^T A_0^{-1} R_0 + \sum_i R_i^T A_i^{-1} R_i$$

Choice of Coarse Space

- select coarse space basis $\{\Psi_j\}$ of finite element functions with $\sum_j \Psi_j \equiv 1$
- basis function Ψ_j represented by coefficient vector r_j
- vectors r_j columns of prolongation matrix R_0^T
- coarse space is spanned by columns of R_0^T
- basis function Ψ_j has support ω_j
- {ω_j} shape regular, uniformly overlapping, finite covering of Ω

Convergence Theory Coefficient Explicit Condition Number Bound

• theorem [Scheichl, Vainikko, 2007]

$$\kappa(ilde{B} {m A}) \lesssim \gamma(lpha) \left(1 + \max_j rac{H_j}{\delta_j}
ight)$$

- H_j measure for diameter of ω_j
- δ_j measure for overlap
- $\gamma(\alpha)$ coarse space robustness indicator

$$\gamma(\alpha) = \max_{j} \delta_{j}^{2} \left\| \alpha | \nabla \Psi_{j} |^{2} \right\|_{L_{\infty}(\Omega)}$$

 guides choice of {Ψ_j} w.r.t. α: energy minimisation

Jan Van lent (Bath)

Energy Minimising Coarse Basis

• for given A and R_j

• coefficient vector of coarse basis function Ψ_j

$$r_j = R_j^T q_j$$

• energy minimisation problem

min
$$\sum_{j} q_{j}^{T} A_{j} q_{j}$$

s.t. $\sum_{j} R_{j}^{T} q_{j} = 1$

Construction of the Coarse Space

- basis functions defined locally $r_j = R_j^T q_j$
- solution of local problem $A_j q_j = g_j$
- well chosen right hand side g_i
- assume $g_j = R_j g \Rightarrow r_j = R_j^T A_j^{-1} R_j g$
- preservation of constants $\sum_j r_j = 1$

$$\sum_{j} r_{j} = \sum_{j} R_{j}^{T} A_{j}^{-1} R_{j} g = Bg = \mathbb{1}$$

• g : Lagrange multipliers of constrained minimisation problem

Example: Fine Scale Binary Medium

 $\alpha = 10^{6}$

n _s n m	one	lin	linbc	oscbc	erg
4 8 32	24	34	34	24	25
8 8 <mark>64</mark>	40	59	62	27	27
168128	77	112	115	26	26
328256	154	219	240	26	26

<i>n</i> _s = 32, <i>n</i> = 8, <i>m</i> = 256						
lpha	one	lin	linbc	oscbc	erg	
10 ⁰	129	22	22	22	22	
10 ²	132	81	52	23	23	
104	132	218	218	25	26	
10 ⁶	154	219	240	26	26	

Example: Gausian Random Field mean 0, variance σ^2 , correlation length λ

$$\lambda = 5h$$

 $\lambda = 50h$

coefficient $\alpha = \exp \text{Gaussian}$

Jan Van lent (Bath)

Robust Coarse Space

Variance Robustness

	σ^2	one	lin	linbc	oscbc	erg
-	0	67	22	22	22	23
	2	162	44	40	36	35
	4	226	65	55	46	44
	8	377	121	94	65	62
	12	531	199	146	86	81
	16	662	304	213	108	103
	20	819	440	297	133	126

Solving the Partition of Unity System

- how to solve the system Bg = 1?
- exploit structure of $B = \sum_{i} R_{i}^{T} A_{i}^{-1} R_{i}$
- precondition B with A [Wan, Chan & Smith 2000] only as good as one-level method
- I diagonal preconditioner [Xu, Zikatanov 2004] $D = \operatorname{diag}(B)^{-1}$
- Iocalised version of A $E = \sum_{i} R_{i}^{T} A_{i} R_{i}$
- construct one-level preconditioner C for B

One-Level Preconditioner for a One-Level Preconditioner

- matrix A
- local problems for $A_i = R_i A R_i^T$
- one-level preconditioner $B = \sum_{i} R_{i}^{T} A_{i}^{-1} R_{i}$
- local problems $B_j = R_j B R_j^T$
- one-level preconditioner $C = \sum_j R_j^T B_j^{-1} R_j$
- A and A_i sparse, but B and B_j dense
- $B \sim A^{-1}$ and $C \sim B^{-1}$ so somehow $C \sim A$

Implementing the Partition of Unity Preconditioner

- consider a domain j with 2 neighbours k and l
- local problem solve

$$B_{j}^{-1} = (A_{j}^{-1} + \hat{l}_{jk}A_{k}^{-1}\hat{l}_{kj} + \hat{l}_{jl}A_{l}^{-1}\hat{l}_{lj})^{-1}$$

• Sherman-Morrison-Woodbury formula

$$B_{j}^{-1} = A_{j} - A_{j} \begin{bmatrix} \hat{l}_{jk} & \hat{l}_{jl} \end{bmatrix} H_{kl}^{-1} \begin{bmatrix} \hat{l}_{kj} \\ \hat{l}_{lj} \end{bmatrix} A_{j}$$
$$H_{kl} = \begin{bmatrix} A_{k} \\ A_{l} \end{bmatrix} + \begin{bmatrix} \hat{l}_{kj} \\ \hat{l}_{lj} \end{bmatrix} A_{j} \begin{bmatrix} \hat{l}_{jk} & \hat{l}_{jl} \end{bmatrix}$$

• sparse system solve

Robustness of the Partition of Unity Preconditioner

_

binary medium

Gaussian field

lpha	A	Ľ)	Е	С
10^{0}	53	4	3	18	10
10 ²	70	10)8	56	10
10 ⁴	71	11	9	134	9
10 ⁶	71	3	7 2	200+	9
	I				
n _s n I	m	А	D	Е	С
483	32	18	33	167	10
886	54	31	37	200	+ 10
<mark>16</mark> 81	28	52	38	200	+ 10
<mark>32</mark> 82	56	71	37	200	+ 9
Jan Va	an lent	(Bath)			Robust Co

σ^2	А	D	Е	С
0	38	44	18	10
2	96	94	37	13
4	138	164	55	14
8	200	200^{+}	96	15
12	200+	200^{+}	152	16
16	200+	200^{+}	199	16
20	200+	200+	200^{+}	17

Remarks

• coarse grid construction is **scalable**

- more costly than other coarsening strategies, but "optimal"
- inaccurate solve sufficient for Bg = 1
- important: choice of supports

ideas: aggregation (strong connections), compatible relaxation, ...

- alternative interpretation: optimal BCs for multiscale FE
- interesting also for numerical homogenisation (upscaling)

Summary

- considered elliptic equations with varying coefficients
- two-level preconditioner
 for a given set of overlapping supports
- construction is not cheap, but algebraic, scalable and robust
- main ideas
 - simple construction of coarse space
 - one-level preconditioner for one-level preconditioner
 - implementation via Sherman-Morrison-Woodbury
- topics for further research
 - convergence analysis
 - choice of supports
 - tensor coefficients
 - non-symmetric systems

- Mandel, Brezina, Vaněk, Energy Optimization of Algebraic Multigrid Bases, *Computing*, 1999.
- Wan, Chan, Smith, An Energy-Minimizing Interpolation for Robust Multigrid Methods, *SISC*, 2000.
- Xu, Zikatanov, On an Energy Minimizing Basis for Algebraic Multigrid Methods, *Comput. Visual. Sci.*, 2004.
- Brannick, Brezina, MacLachlan et al, An Energy-based AMG Coarsening Strategy *Num. Lin. Alg. Appl.*, 2005.
- Graham, Lechner, Scheichl, Domain Decomposition for Multiscale PDEs, *Numer. Math.*, 2007.
- Scheichl, Vainikko, Additive Schwarz with Aggregation-Based Coarsening for Elliptic Problems with Highly Variable Coefficients, *Computing*, 2007.
- **Graham, Scheichl**, Robust Domain Decomposition Algorithms for Multiscale PDEs, *Numer. Meth. PDEs*, 2007.

Jan Van lent (Bath)