Robust Coarsening for Domain Decomposition Methods

Ivan Graham, Robert Scheichl, Jan Van lent

BICS Department of Mathematical Sciences University of Bath

NA07, University of Dundee Tuesday 26 June 2007

Problem

• elliptic equation

$$\nabla \cdot (\alpha \nabla u) = f$$

- \bullet highly variable coefficient α
- finite element discretisation
- system of equations

$$Au = f$$

Goals

- unstructured grids, varying coefficients: multilevel iterative methods
- domain decomposition: two-level additive Schwarz method
- scalable and robust methods:
 # iterations and cost per iteration well behaved w.r.t.
 - problem size, mesh resolution
 - number of subdomains
 - coefficients!

Example: Fine Scale Binary Medium

- problem size: $2^r \times 2^r$, r = 5
- coefficients: 1 green, α red

Scalability and Coefficient Robustness # iterations for two-level additive Schwarz as preconditioner for CG

$\alpha = 1$	<i>r</i>	one	lin	linbc	oscbc	erg
	5	22	22	22	22	22
	6	36	23	23	23	22
	7	67	22	22	22	23
	8	129	22	22	22	22
$lpha=10^6$	r	one	lin	linbc	oscbc	erg
	5	24	34	34	24	25
	6	40	59	62	27	27
	7	77	112	115	26	26
	8	154	219	240	26	26

Two-Level Overlapping Additive Schwarz Method

• fine grid

Two-Level Overlapping Additive Schwarz Method

• fine grid

subdomains

Two-Level Overlapping Additive Schwarz Method

- fine grid
- subdomains
- overlap

Two-Level Overlapping Additive Schwarz Method

- fine grid
- subdomains
- overlap
- coarse grid

Two-Level Overlapping Additive Schwarz Method

- fine grid
- subdomains
- overlap
- coarse grid
- coarse basis

Formulation of the Two-Level Method

- system Au = f
- restriction matrices R_i
- local problems $A_i = R_i A R_i^T$
- one-level preconditioner

$$B = \sum_{i} R_i^T A_i^{-1} R_i$$

- restriction matrix R_0
- coarse problem $A_0 = R_0 A R_0^T$
- two-level preconditioner

$$ilde{B} = R_0^{ op} A_0^{-1} R_0 + \sum_i R_i^{ op} A_i^{-1} R_i$$

• columns r_i of R_0^T span coarse space

Ivan, Rob, Jan (Bath)

Robust Coarsening for DD

Construction of the Coarse Space (R_0)

- basis functions defined locally $r_i = R_i^T q_i$
- solution of local problem $A_i q_i = g_i$
- well chosen right hand side g_i
- assume $g_i = R_i g \implies r_i = R_i^T A_i^{-1} R_i g$
- preservation of constants $\sum_i r_i = \mathbf{1}$

$$\sum_{i} r_i = \sum_{i} R_i^T A_i^{-1} R_i g = Bg = \mathbf{1}$$

• g : Lagrange multipliers of constrained minimisation problem

Example: Fine Scale Binary Medium

- coarse grid: 4×4
- fine grid: 8×8
- problem size: $2^r \times 2^r$, r = 5
- coefficients: 1 green, α red
- subdomains
- coarse basis

Scalability and Coefficient Robustness

$lpha=10^{6}$	r	one	lin	linbc	oscbc	erg
	5	24	34	34	24	25
	6	40	59	62	27	27
	7	77	112	115	26	26
	8	154	219	240	26	26
<i>r</i> = 8	α	one	lin	linbc	oscbc	erg
r = 8	α 10 ⁰	one 129	lin 22	linbc 22	oscbc 22	erg 22
r = 8	α 10 ⁰ 10 ²	one 129 132	lin 22 81	linbc 22 52	oscbc 22 23	erg 22 23
r = 8	α 10 ⁰ 10 ² 10 ⁴	one 129 132 132	lin 22 81 218	linbc 22 52 218	oscbc 22 23 25	erg 22 23 26
r = 8	$egin{array}{c} & & \ 10^0 & \ 10^2 & \ 10^4 & \ 10^6 & \ \end{array}$	one 129 132 132 154	lin 22 81 218 219	linbc 22 52 218 240	oscbc 22 23 25 26	erg 22 23 26 26

Example: Gaussian Random Field mean 0, variance σ^2 , correlation length λ

$$\lambda = 5h$$

 $\lambda = 50h$

coefficient $\alpha = \exp \text{Gaussian}$

Ivan, Rob, Jan (Bath)

Robust Coarsening for DD

Variance Robustness

σ^2	one	lin	linbc	oscbc	erg
0	67	22	22	22	23
2	162	44	40	36	35
4	226	65	55	46	44
8	377	121	94	65	62
12	531	199	146	86	81
16	662	304	213	108	103
20	819	440	297	133	126

Preconditioning the One-Level Preconditioner

- how to solve the system Bg = 1?
- precondition *B* with *A* only as good as one-level method
- B has special structure, "local" operator
- no global solve needed
- construct one-level preconditioner C for B
- other ideas
 - diagonal preconditioner :
 - ► localised version of *A* :

$$D = \operatorname{diag}(B)^{-1}$$
$$E = \sum_{i} R_{i}^{T} A_{i} R_{i}$$

One-Level Preconditioner for the One-Level Preconditioner

- matrix A
- local problems for $A_i = R_i A R_i^T$
- one-level preconditioner $B = \sum_{i} R_{i}^{T} A_{i}^{-1} R_{i}$
- local problems $B_j = R_j B R_j^T$
- one-level preconditioner $C = \sum_j R_j^T B_j^{-1} R_j$
- A and A_i sparse, but B and B_j dense
- $B \sim A^{-1}$ and $C \sim B^{-1}$ so somehow $C \sim A$

Implementing the Preconditioner

- consider a domain j with 2 neighbours k and l
- local problem solve

$$B_j^{-1} = (A_j^{-1} + \hat{l}_{jk}A_k^{-1}\hat{l}_{kj} + \hat{l}_{jl}A_l^{-1}\hat{l}_{lj})^{-1}$$

• Sherman-Morisson-Woodbury formula

$$B_{j}^{-1} = A_{j} - A_{j} \begin{bmatrix} \hat{l}_{jk} & \hat{l}_{jl} \end{bmatrix} H_{kl}^{-1} \begin{bmatrix} \hat{l}_{kj} \\ \hat{l}_{lj} \end{bmatrix} A_{j}$$
$$H_{kl} = \begin{bmatrix} A_{k} \\ A_{l} \end{bmatrix} + \begin{bmatrix} \hat{l}_{kj} \\ \hat{l}_{lj} \end{bmatrix} A_{j} \begin{bmatrix} \hat{l}_{jk} & \hat{l}_{jl} \end{bmatrix}$$

• sparse system solve

Robustness of Coarse Space Construction

binary medium

α	mat	diag	loc	as
10^{0}	53	43	18	10
10 ²	70	108	56	10
10^{4}	71	119	134	9
10^{6}	71	37	200-	- 9
	I			
r	mat	diag	loc	as
5	18	33	167	10
6	31	37	200^+	10
7	52	38	200^+	10
8	71	37	200^+	9

Gaussian field							
σ^2	mat	diag	loc	as			
0	38	44	18	10			
2	96	94	37	13			
4	138	164	55	14			
8	200	200^{+}	96	15			
12	200+	200^{+}	152	16			
16	200+	200^{+}	199	16			
20	200+	200^{+}	200+	17			

Summary

- considered elliptic equations with varying coefficients
- two-level preconditioner for a given set of overlapping subdomains
- construction is not cheap, but algebraic, scalable and robust
- main ideas
 - simple construction of coarse space
 - one-level preconditioner for one-level preconditioner
 - linear algebra trick
- topics for further research
 - convergence analysis
 - choice of subdomains
 - non-symmetric systems

References

- Mandel, Brezina, Vaněk, *Energy Optimization of Algebraic Multigrid Bases* (1999)
- Wan, Chan, Smith, An Energy-Minimizing Interpolation for Robust Multigrid Methods (2000)
- Xu, Zikatanov, On an Energy Minimizing Basis for Algebraic Multigrid Methods (2004)
- Graham, Lechner, Scheichl, *Domain Decomposition* for Multiscale PDEs (2006)
- Scheichl, Vainikko, Additive Schwarz with Aggregation-Based Coarsening for Elliptic Problems with Highly Variable Coefficients (2006)